
AFRL-SN-RS-TR-2001-194
Final Technical Report
September 2001

HIGH PERFORMANCE COMPUTING SUPPORT
FOR ADVANCED RADAR TECHNOLOGY
RESEARCH CONSORTIUM

Maui High Performance Computing Center

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D138

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20020116 180
AIR FORCE RESEARCH LABORATORY

SENSORS DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-SN-RS-TR-2001-194 has been reviewed and is approved for publication.

APPROVED: > " *
E. DOUGLAS LYNCH, JR.
Project Engineer

FOR THE DIRECTOR: ffcF&.
ROBERT G. POLCE
Chief, Rome Operations Office
Sensors Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/SNRT, 26 Electronic Pky, Rome, NY 13441-
4514. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

HIGH PERFORMANCE COMPUTING SUPPORT FOR ADVANCED RADAR
TECHNOLOGY RESEARCH CONSORTIUM

Donald J. Fabozzi, II
Blaise Barney

Joe Fogler
Mike Koligman

Steve Jackett
Brendan Bradley

Contractor: Maui High Performance Computing Center
Contract Number: F30602-95-C-0117
Effective Date of Contract: 13 June 1995
Contract Expiration Date: 31 January 2000
Short Title of Work: High Performance Computing Support

for Advanced Radar Technology
Research Consortium

Period of Work Covered: Jun 95 - Jan 00
Principal Investigator: Donald J. Fabozzi, II

Phone: (808) 879-5077
AFRL Project Engineer: E. Douglas Lynch, Jr.

Phone: (315)330-4515

Approved for Public Release; Distribution Unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Stephen A. Scott, AFRL/SNRT, 26 Electronic Pky, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Pubic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information Send comments regarding this burden estimate or any other aspect of tNs collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 107040188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blaok)

4. TITLE AND SUBTITLE

2. REPORT DATE

September 2001

3. REPORT TYPE AND DATES COVERED

Final Jun 95 - Jan 00

HIGH PERFORMANCE COMPUTING SUPPORT FOR ADVANCED RADAR
TECHNOLOGY RESEARCH CONSORTIUM
6. AUTHOR(S)

Donald J. Fabozzi, II, Blaise Barney, Joe Fogler, Mike Koligman, Steve Jackett, and
Brendan Bradley
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Maui High Performance Computing Center
550 Lipoa Parkway
Kihei HI 96753

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/SNRT
26 Electronic Pky
Rome NY 13441-4514

11. SUPPLEMENTARY NOTES

S. FUNDING NUMBERS

C -F30602-95-C-0117
PE -63226E
PR -MSEF
TA -05
WU-02

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-SN-RS-TR-2001-194

AFRL Project Engineer: E. Douglas Lynch, Jr./SNRT/(315) 330-4515

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words/

This report encapsulated many provisions by the MHPCC to the Advanced Early Warning (AEW) community including
compute time, online radar and IR databases, Khoros toolboxes, and MATLAB lparallelization.

14. SUBJECT TERMS

Advanced Early Warning (AEW), RSTER, Matlab, Khoros

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

294
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Sid. 239.18
Designed using Perform Pro, WHS/DIOR, Dct 94

Table Of Contents
PAGE

List Of Figures ii

List of Tables iv

1. Executive Summary 1.

2. KHOROS-Based High Performance Computing Techniques For
Radar Signal Processing 5.

3. HPC For Advanced Early Warning Simulations In RLSTAP 21.

4. Critical Design Review For Advanced Signal Processing , Integration Of New
STAP Routines Into RLSTAP 26.

5. RLSTAP_HPC Integrations Of Algorithms Written In MATLAB 50.

6. Critical Design Review For Advanced Signal Processing, Integration Of
Parallelism, And RLSTAP 58.

7. RLSTAP_HPC Parallelization Effort 73.

8. PARA_TOOLS Manuel Intro, Design, Instructions 82.

9. Critical Design Review For Advanced Signal Processing, Integration Of
Data Compression Into RLSTAP 116.

10. RLSTAP_HPC Data Compression Effort 134.

11. Compression Manual 143.

12. Critical Design Review For Advanced Signal Processing, RLSTAP
Validation In KHOROS 2.1 158.

13. Enabling Online Help And Manual Pages For KHOROS PRO 2.2 195

14. An Examination Of Parallelism with MultiMATLAB 205.

15. Using MultiMATLAB At The MHPCC 243.

16. Distributed Algorithm Stream (DAS) 262.

17. MHPCC Web-Based IR Data Library Simulation 267.

Bibliography/References 279.

List of Figures

Section 2.0
Figure 1 RLSTAP/ADT 7.
Figure 2 Data Generation and Processing Experiment 8.
Figure 3 Comparative Execution Times for Simulation of Single Dwell

Serial Execution 9.
Figure 4 Single Program Multiple Data (SPMD) 10.
Figure 5 Frame Sequence of Range Doppler Plots from Khoros "Animate" 11.
Figure 6 Simplified Pseudocode Version of the Clutter Generation 12.
Figure 7 Monostatic Clutter Execution Load 13.
Figure 8 Clutter Generation Serial Processing 14.
Figure 9 RPECube 15.
Figure 10 MnClMPI 15.
Figure 11 Clutter Generation MPI Implementation 17.
Figure 12 Clutter Generation MPI Implementation 18.
Figure 13 Clutter Generation MPI Implementation 19.
Figure 14 Comparative Executions Times for Clutter Simulation Chart 20

Section 6.0
Figure 1 Example Workspace Containing Motet Composition 60.
Figure 2 Example Workspace Using Proposed Extensions to Motet 62.

Section 12.0
Figure 1 Khoros 1.0 Conventional Beamformer Workspace 164.
Figure 2 Khoros 2.1 Conventional Beamformer Workspace 165.
Figure 3 Khoros 1.0 Joint Domain-Optimal STAP Workspace 167.
Figure 4 Khoros 2.1 Joint Domain-Optimal STAP Workspace 168.
Figure 5 Khoros 1.0 Physical Model Workspace 170.
Figure 6 Khoros 2.1 Physical Model Workspace 171.

Section 13.0
Figure 1 Formatting Groff 197.
Figure 2 Groff Command Output 198.
Figure 3 Manual Page Interface 202.

Section 14.0
Figure 1 Serial Mul.m-Serial Matrix Multiplication 218.
Figure 2 MultiMATLAB version - Master Processor 218.
Figure 3 Slave Processor Execution 219.
Figure 4 Matrix Multiply Performance with MultiMATLAB 219.
Figure 5 "3D" Performance with MultiMATLAB 220.
Figure 6 Matrix Inverse Performance with MultiMATLAB using "Get" 221.
Figure 7 Matrix Inverse Performance with MultiMATLAB using "Sum" 221.
Figure 8 "Simple FFT" Performance with MultiMATLAB 222.
Figure 9 Column-wise 2D FFT Performance with MultiMATLAB 222.
Figure 10 Function Flow of RTExpress Components 224.
Figure 11 Timings for test code tst_dirich.m 226.
Figure 12 Timings for test code inv.m 227.

li

Figure 13 Timings for test code simple.m 228.
Figure 14 Timings for test code filt.m 228.
Figure 15 Timings for test code rawtoftl .m 229.
Figure 16 Timings for test code raawtofft2.m 230.
Figure 17 Vectorized and Non-vectorized versions of Matrix Multiply 231.

Section 15.0
Figure 1 Relationship between distributed Processors 245.
Figure 2 MultiMATLAB Architecture 245.
Figure 3 Serial Mul.m - serial matrix multiplication 247.
Figure 4 Master program broadcast and retrieve data 247.
Figure 5 Slave Processor Execution 248.
Figure 6 Example Data Partitioning Bounds 248.

Section 17.0
Figure 1 AIRMS 720B Aircraft with 24" Aperture MW/LWIR Sensor 269.
Figure 2 AIRMS Data Library and Processing Environment 270.
Figure 3 IBM SP2 - RS6000 Unix Processors 271.
Figure 4 Simple Query Window 273.
Figure 5 Background and Target Search Parameters 274.
Figure 6 Detailed Database Output for Flight 12 Including Sample Imagery 275.
Figure 7 Quick Summary Database Output 276.
Figure 8 Raw Flight 12 data with Pattern Noise 277.
Figure 9 Processed Flight 12 Data Pattern Noise Removed 277.

in

List of Tables

Section 14
Table 1 "Survey of Leading Approaches" 208.
Table 2 "Falcon Code Conversion Results" 213.
Table 3 "Available Matpar Commands" 214.
Table 4 "Available Parallel Toolbox Commands" 215.
Table 5 "MultiMATLAB Commands" 217.
Table 6 "MultiMATLAB Test Codes" 217.
Table 7 "RTExpress Test Codes" 226.
Table 8. "RTExpress Communication Variations" 226.
Table 9. "Timings for Test Code loops.m" (Non-Vector) 230.
Table 10. "Timings for Test Code loops.m (Vectorized) 231.
Table 11. "Timings for Test Code tst_icn.m and tst_finedif.m" 231.

iv

1. Executive Summary

Executive Summary

The Maui High Performance Computing Center (MHPCC) is pleased to submit
the final report for the contract "High Performance Computing Support For Advanced
Radar Technology Research Consortium" for the period from June 29,1995 to March 31,
1999. The project support included high performance computing cycles on the MHPCC
Scalable Parallel (SP) system, software development in the areas of Khoros and
MATLAB-based algorithms, and database development and management of the Radar
Surveillance Technology Experimental Radar (RSTER) data and Airborne Infrared
Measurement System (AIRMS). The project also provided hardware support, including
MHPCC's High Performance Storage System (HPSS), dedicated program servers, disk,
memory, and peripherals. Also installed to support this project were software packages
such as Khoros 1.0P5 and V2.2 (Pro), MATLAB V4.2 and V5.0, Iona's Orbix 1.0 and
2.3, and IBM's Merchantile Solver. This report provides a complete description of each
subtask, along with the entire library of generated papers, viewgraph presentations, and
source code listings. The following paragraphs provide an overview of each of the
contract requirements, followed by a table listing of each deliverable. This work was
entirely supported by the Defense Advanced Research Projects Agency/ Sensor
Technology Office (DARPA/STO) with guidance and assistance from Air Force
Research Laboratory - Rome Site, Science Applications International Corp. (SAIC), and
Massachusetts Institute of Technology/ Lincoln Laboratory (MIT/LL).

MHPCC established the Common Research Environment for STAP Technology
(CREST) World Wide Web (WWW) server with direct access to the SP environment.
This server is aliased to wwwcrestmhpcc.edu and serves the program information via the
WWW. This server provides access to the online distribution of the-Rome Laboratory
Space-Time Adaptive Processing/ Algorithm Development Tool (RLSTAP/ADT) and the
CREST and AIRMS data libraries.

MHPCC integrated an adniinistration system to assign, maintain, and track
CREST researcher accounts. The account CPU hours were tabulated monthly and
provided in the Quarterly Progress Reports.

MHPCC also provided dedicated help desk support for government approved
researchers. A dedicated help desk system was, set up to track, remedy, and catalog all
assistance to approved researchers.

The "Investigation of Parallelization of AEW Simulations Using the Rome
Laboratory Space Time Adaptive Processing Algorithm Development Tool
(RLSTAP/ADT)W subtask investigated and implemented four technologies into Khoros'
Cantata visual programming environment Khoros is a third-party software product
which includes over 250 mathematical, signal and image processing libraries along with
the visual programming environment, Cantata. The technologies investigated include
parallelization techniques with Khoros, integrating MATLAB algorithms into Khoros,
implementing data compression utilities into Khoros, and conducting a thorough review
of Rome Laboratory's RLSTAP/ADT operation under Khoros 2.1. Included in this

report are the viewgraphs from the September 30, 1997 Final Design review held at the
University of New Mexico Galles Building. Also included are the manual pages for the
parallel tools and compression utilities, and a copy of the paper "Khoros-based High
Performance Computing Techniques for Radar Signal Processing" presented at the 1997
Khoros Symposium. The critical design reviews from each of the four subtasks along
with the final report "RLSTAP Validation in Khoros 2.1" are also included. All works
were performed by MHPCC and the Albuquerque High Performance Computing Center
(AHPCC).

The "Investigation of Parallelization of Airborne Early Warning (AEW)
Simulations Written in MATLAB" subtask details the results of the investigations of
three approaches to high performance computing with MATLAB. The areas are in
compiler and translator approaches, distributed MATLAB techniques, and conversion
and integration techniques using Message Passing Interface (MPI) constructs. The
approaches are investigated in the areas of speedup, scalability, portability, training time,
and other miscellaneous advantages and disadvantages. This report includes a survey of
the available techniques in MATLAB-based computing, followed by a deeper study of
one candidate from each of the three categories. The packages evaluated were the
Mathwork's MATLAB compiler, Cornell Theory Center's (CTC) MultiMATLAB, and
Integrated Sensors Incorporated's (ISI) RTExpress. Also included are support utilities
and user's guides for operation of MATLAB compiler and MultiMATLAB at the
MHPCC.

The original Airborne Infrared Measurment System (AIRMS) program was a Defense
Advanced Research Projects Agency/ Sensor Technology Office (DARPA/STO)
sponsored effort which collected and processed 2 TBytes of data from a 24 inch infrared
aperture, mounted on a Boeing 720B aircraft MHPCC, along with Par Government
Systems and Request Technologies, developed a server and interface for access of the
AIRMS data product for online query, retrieval and processing. MHPCC utilized the
technology from the DARPA Common Research Environment for STAP Technology
(CREST) data library to distribute the AIRMS data through a World Wide Web (WWW)
interface. In addition, the AIRMS data library project implemented the high performance
IR data processing algorithms on the MHPCC SP system. Included in this report are the
status of AIRMS flight database entries, the help file for the AIRMS Distributed
Algorithm Stream (DAS) algorithm descriptions, execution instructions of the DAS at the
MHPCC, and a technical paper presented at the SPIE '98 conference entitled "MHPCC
Web-based IR Data Library and Simulation*'. The SPIE paper was.produced on behalf of
the AIRMS data library developers, Par Government Systems, at no additional cost to the
contract The AIRMS database was announced publicly on February 2,1999 and is
currently online at http^/wwwCTesLmhpcc.edu/airms/ouerv/.

MHPCC has been supplying System Services to support the IBM servers, disk, and
software for the Advanced Signal Processing (ASP) program. Those include the IBM

server, sixteen Gigabytes of hard disk storage, and the software packages Orbix,
MATLAB, and Khoros.

The Northrop Grumman Dedicated Execution project involved system and application
support of Northrop Grumman who performed dedicated electromagnetic simulations on
the MHPCC SP system. The SP configuration consisted of 4 frames of 8 Wide nodes (32
nodes) for electromagnetic airframe modeling. The MHPCC support for this execution
included system problem resolution, system configuration, and data handling. The
MHPCC also procured the "Merchantile Solver" which is an "out-of-core" linear solver
developed by Ali Merchantile at IBM. This work began on July 21, 1997 and ended on
January 6, 1998. For further information on this project, please contact the security
office at MHPCC, (808)879-5077.

The Rome Laboratory Dedicated Execution operated on the same thirty-two SP
"Wide" nodes as the Northrop Grumman project during the period of October 13-31,
1997. MHPCC support for this task included the areas of bulk parallelization, data
handling, and dedicated support. For further information on this project please contact
Mark Pugh at AFRL Rome Site, (315)330-7684.

The University of Hawaii Parabolic Wave Equation (PWE) project consisted of
Lincoln Laboratory and the University of Hawaii performing a course-grain parallel
implementation and execution of the Variable Terrain Radio Parabolic Equation
(VTRPE) code. VTRPE was developed by Frank Ryan at the Naval Ocean Systems
Center and is utilized by Lincoln Laboratory. The University of Hawaii implemented the
parallelization of the VTRPE code and, with guidance and assistance from Lincoln
Laboratory conducted runs on the MHPCC system. Enclosed is the final report of this
work.

Two students from Maui Community College (MCC) provided support in the areas of
web design, manual page development, and the parallel MATLAB task. The new web
pages currently exist at http://wwwcrest.mhpcc.edu/. The manual page development task is
documented in the report, "Enabling Online Help and Manual Pages for Khoros Pro 2.2".
which details all of the utilities and configurations necessary for utilizing the Khoros
manual pages on the IBM AIX 42 architecture. MCC also contributed to the report,
"Using MultiMATLAB at MHPCC".

2. Khoros-Based High Performance
Computing Techniques for Radar Signal

Processing

DJ. Fabozzi
Maui High Performance Computing Center (MHPCC)

Ed Starczewski
AFRL Rome Lab
Tom Robbins
Steve Helmer
Kaman Sciences

14 March, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

"KHOROS-BASED HIGH PERFORMANCE COMPUTING
TECHNIQUES

FOR RADAR SIGNAL PROCESSING"

Presented at the Internation Khoros Symposium, March 24-26 1997

DJ. Fabozzi, Ed Starczewski, Tom Robbins, and Steve Helmer

The simulation of high fidelity radar surveillance data is very valuable for algorithm testing but
analogously computationally expensive. The Khoros-based Rome Lab Space Time Adaptive Processing /
Algorithm Development Tool (RLSTAP/ADT) simulates single degree coverage of terrain-specific or
homogenous radar data but was designed for execution on the desktop workstation. To respond to the need
for the simulation and processing of high fidelity Advanced Early Warning (AEW) radar systems,
enhancements were implemented to the RLSTAP-Cantata structure which allow the efficient simulation of
the full 360 degree surveillance volume on multiple processors of the distributed memory Maui High
Performance Computer (MHPCC). Through a batch queuing technique and the integration of an MPI-based
clutter generator, simulation and processing execution times are significantly reduced. This report details
how these techniques are providing remote researchers with a powerful, user-friendly, and low-bandwidth
interface to remote computing.

INTRODUCTION

In support of the DARPA/STO Advanced Signal Processing (ASP) Program, Rome Laboratory (RL)
developed the "Rome Laboratory Space Time Adaptive Processing (STAP) Algorithm Development Tool
(RLSTAP/ADT) to support a wide variety of Advanced Early Warning (AEW) experiments. Developed under
the Khoros 1.0P5 environment, RLSTAP's primary technologies include the evaluation of measured radar
data, the simulation of ground-based or airborne multi-channel data, jammers, clutter, and the development of
new STAP algorithms.

Originally implemented on the desktop workstation, it was soon desired to utilize RLSTAP to investigate
commercial radar technologies which required High Performance Computing (HPC). Upon selecting the
Maui High Performance Computing Center (MHPCC) as the compute engine, the challenge then became how
to embrace the remote compute power while maintaining the Khoros-Cantata user-friendly environment. With
a low bandwidth connection to the MHPCC as the dominant operational constraint, the optimal architecture
involved minimizing the communication by distributing data and precompiled libraries remotely at the
MHPCC. This architecture further involved augmenting remote "client" versions of Khoros-Cantata to have
the capability to record, transport, and execute experiments remotely. This implementation has proven very
successful in that remote researchers can execute intensive simulations, generate United States Geological
Survey (USGS) maps, and perform large data set quick look and signal processing experiments through this
flexible, intuitive environment.

In fact, since its announcement in January, 1996, RLSTAP has been utilized by over 70 Department of
Defense (DOD) organizations and contractors across the United States. As users return feedback into the
development, the RLSTAP utility is continually evolving, primarily in the areas of High Performance
Computing and the migration to Khoros 2. This report snapshots the current version of RLSTAP and details
the Remote-RLSTAP augmentation, followed by an overview of the integration of a Message Passing
Interface (MPI) version RLSTAP's most exhaustive component, monostatic clutter generation.

THE ROME LABORATORY SPACE-TIME ADAPTIVE PROCESSING ALGORITHM DEVELOPMENT
TOOL (RLSTAP/ADT)

As mentioned, RLSTAP is a full end -to-end simulation and processing toolbox consisting of the
following sub-toolboxes: Physical Model, Signal Processing, Receiver, Mathtools, Diagnostics, Recorded
Data, Detection, Waveforms and Filters, and Remote Processing. As illustrated in Figure 1, each sub-tool
box is accessible from the Cantata main form:

Rome Laboratory Space-Tine Adaptive Processing / Algorithm Development Tool (RLSTflP/ftBT)

Hain Pantaf a Uflrlwiaro

Figure 1

The Physical Model performs radar modeling and is divided into separate modules for the transmitter,
transmitter platform, waveform, transmit antenna, receiver, receiver platform, and receiver antenna. The
Physical Model (PM) also allows the analyst to generate realistic target, jammer, and clutter signals. The
clutter generator simulates homogenous or user-specified locations using terrain height and terrain cover

information available in the USGS database to derive the line-of-sight visibility, grazing angle, and clutter type
for each range-angle cell in a surveillance volume. The PM also:

• models Targets as point sources with user specified Radar Cross Section (RCS), range, angle, heading and
velocity

• models ground-based or airborne barrage noise jammers with user specifiable location, orientation,
radiated power, modulation type, center frequency, bandwidth, period, duty factor and sweep rate.

The Receiver Toolbox simulates the radar receiver through user-defined gains/losses, RMS gain
variations, system noise figure, and system noise temperature.

The Signal Processing toolbox provides a library of radar signal processing functions such as Pulse
Compression, Motion Compensation, Moving Target Indication, Doppler Subbanding, Beamforming, Steering
Vector, STAP Rules, Covariance matrix, Diagonal Loading, Inverse Covariance matrix, and Adaptive
Weights.

The Diagnostic Tools include XPRISM plotting, Animation, and various test facilities.

The Remote Processing Toolbox contains all of the facilities necessary to generate, transport, process,
and visualize High Performance Computing experiments, as described in the following sections.

THE REQUIREMENTS FOR HIGH PERFORMANCE COMPUTING

The original version of RLSTAP performs static simulation/processing on one scan angle or Coherent
Processing Interval (CPI) at a time. Recently, however, it has been required to rapidly simulate/process entire
surveillance volumes to closer model active commercial radar systems.

Similarly, there often exists the need to efficiently examine large quantities of collected mission data.
Data collection experiments occur continuously in the radar community and it is often the burden of the
collecting organization to review the data quality and features. Automated processing systems are very
valuable in these cases to fully review the complete data storage.

From a data simulation perspective, typical STAP experiments are performed on one look angle at a
time and usually complete on the order of minutes. For example, the data generation and processing
experiment in Figure 2 is a typical processing line-up,.

Figure 2

with the following specifications:

•number of range cells: (N_RCVR_RNGPTS)= 112

•number of azimuth points in a range-angle map (N_RCVR_RA_MAP_AZPTS)=40

•number of range points in a range-angle map (N_RA_MAP_RNGPTS)=824

•number of pulses (N_PULSES)=256

•number of channels (N_ELEM)=26

The execution times were measured for various platforms, as illustrated in Figure 3:

COMPARITIVE EXECUTION TIMES FOR SIMULATION
OF SINGLE DWELL, SERIAL EXECUTION

{CLUTTER REPRESENTS
GREATEST PROCESSING LOAD}

i
PROCESSOR SPECS:

::LI:>CK..M£M.OA-:;-:I:

EXECUTION

TIME fun-Mirj ice:

EXEC. TIME

MnCIPfse ;HftM;rj.;:i

•/.TIME SPENT IN

ci MnCIPISO

ESTIMATED
COMPUTATION
TIME. FULL LINEUP.
36 DWELLS(HR:MIN)

ESTIMATED
COMPUTATION
TIME. FULL LINEUP.
360 DWELLS(HH:MIN) [hostname}

SPARC 2
Tiosos.cc.rl.at.mJ) 30Mhz/32MB/none

REAL: 5:15.03
USER: 5:09.01
SYS: 87.9

REAL: 5:07.02
USER: 5:02.49
SYS: 65.6

97.4
97.9
74.5

REAL=189:06 REAL=1891:05

3PARC10
fiiountain.oc.il.af .mil)

rfodel: 41
tOMhz/12BMB
jrlmary: 20KB1+16KB
ificnnHary- nnnp

2:17.30

> 2:13:«
2:12.5B
2:10.45

.34

96.1
97.3
73.0

82:30 825:20

3PARC 20
crest.oc.rl.af.mil)

vlodel: SO
J0Mhz/128MB
jrlmary: 20KBI+16KB

1:50.00
1.38.14

3 .29

1:47.21
1:35.58

.19

97.6
97.6
67.0

66:00 660:00

3PARC ULTR/i
CordHit-ra.oc.ri.at.mH)

ulodel: 170
I67MZ/64MB
jrlmary: 16KBI+16KE
;pnnnrtary:S1?KR/l*

:49.15
:44.01

3 .11
11

:44.03
:42.52

.05

89.4
97.4
53.2

29:40 295:30

BM RS6000
30WER PC60
ovorast.ocsa.ri.Bl.mil)

rtodel:41T
!0Mhz/64MB
irimary:32KB(l+D)

:48.58
:41.45

.18

:46.27
:39.37

.15

95.0
94.0
80.0

29:20 293:40

BMSP2
tr2nl6.inhpcc.«du;

3OWER processor
>6.5Mz/64MB
jrimary:31KBI+64KE
ifinrinrtnry: (1-1MR

:35.09
:22.33

D .28

:32.58
:20.31

.25

93.0
92.1
87.5

21:01
210:55

REAL: Total wall clock time to load, execute, exit
USER: time for CPU to execute
SYS: OS time to service requests

Figure 3

As indicated in columns 6 and 7, full 360 degree simulations produce run times which are measured
in days. Also, because the largest percentage of the overall processing is devoted to the generation of the
clutter responses (as indicated in column 5) clutter generation itself also is an excellent candidate for High
Performance Computing.

RLSTAP HIGH PERFORMANCE COMPUTING

The utilization of RLSTAP with the Maui High Performance Computing Center to solve these
problems has taken two primary endeavors:

• A batch processing system to transport, execute, and visualize Cantata experiments between the remote
researcher and the MHPCC and

• a Message Passing Interface (MPI) version of clutter generation.

RLSTAP BATCH PROCESSING WITH KHOROS 1

The basic architecture of Remote-RLSTAP consists of:

• Distributing the RLSTAP precompiled binaries to the user's local workstation and a "server" version at
the MHPCC

• Locating any collected data is located at the MHPCC

• The interfaces for the "client" versions of RLSTAP which provide:

• the offloading of single experiments to single MHPCC SP2-nodes

• the generation of multiple experiments for execution on SP2 nodes

• a mechanism to iterate over multiple parameters with the experiments

• the review, download, and visualization of the results

The novelty of the Remote operation begins with the operation of "client" batch queuing interface.
To capture the workspace action, a global "mode" glyph controls the interception of glyph invocations
from the Cantata scheduler and determines whether to operate in local or batch mode. The execution path
environment variable (PATH) specifies a leading directory (rbin) that contains shell scripts for each
RLSTAP routine which contain control logic to select between the different modes. Thus, upon glyph
execution, each rbin script decides, based on the environment files set by the "mode" glyph, whether to
execute locally or to concatenate the calling glyph's output to the batch file

Next, batch processing filters and generators were implemented to allow the generation of
multiple experiments with the capacity of varying the type and dimension of the processing. The batch
files are then transported via automated FTP sessions to user's HOME directory at the MHPCC. There, a
daemon assigns each job to a node on a first come, first serve basis. As illustrated in Figure 4, this Single
Program Multiple Data (SPMD) type of programming uses a job mapping of one job per node:

ORIGINAL EXPERIMENT

V.rM

jfSffiis^:"-/^!"*- pERM UTATION
FILTER/
LAUNCH TO
MHPCC

JOB MAPPING.
ONE JOB/NODE

'DAEMON:
ATTACH INCOMING
JOBS TO SP2 NODES

Figure 4

This environment was first utilized for the quick-look and STAP processing of the DARPA/STO
Mountain Top data at the MHPCC. Since there are over 4000 data sets available and each contains
between 10-100 CPFs per set, examination of the full library or inter-CPI features quickly becomes a
challenge. Remote RLSTAP provided a solution to this problem whereby users can quickly batch off

10

multiple experiments, each to perform on separate CPIs. Figure 5 illustrates a frame sequence of range-
doppler plots from Khoros' "Animate" that resulted from a typical multi-CPI batch experiment. This
experiment answered the common question of "in which CPIs do the targets actually appear".

DATAFILE: T38-03V1, WSMR, W/IDPCA
FACTORED SPACE-TIME PROCESSING
DIAGONAL LOADING: -55dB
MTI PULSES: 3

Figure 5

The MHPCC-Remote RLSTAP capabilities also provide:

• Signal and STAP processing over multi-CPI Mountain Top Data with the following degrees of
freedom:

* CPI #, diagonal loading, azimuth-elevation steering angle, STAP-center bin #, guard bin # ,
doppler subbanding

• Dynamic physical model multi-CPI radar scenario, transmit-receiver positions, target positions

• USGS mapping. Upon specification of a position and a range extent, the utility can generate and
display any selected region in the United States. Though mapping is commonly available on WWW
sites, this environment further provides the data files necessary to perform clutter simulation.

11

RLSTAP BATCH PROCESSING WITH KHOROS 2

The candidate design of the Khoros 2-based RLSTAP batch processing capability will be based on
processing the standard Khoros workspace file. The workspace file is translated to batch processing scripts
whereby the cantata programming constructs (loops, conditionals, variables and procedures) are supported
in addition to a RLSTAP batch iteration mechanism.

DISTRIBUTED CLUTTER GENERATION

Though the batch processing system can perform off-line generations of multi-CPI surveillance
scenarios, the computational workload to perform them is still great. As indicated in column 5 of Figure 3
this is primarily due to the generation of simulated clutter. Upon examination of the clutter algorithm, or
"MnClPlse", it was quickly determined that the most significant improvement in execution would result
from distributing the workload among multiple processors..

Prior to discussing the parallelization effort, however, a discussion of the clutter generation
algorithm will provide an appreciation of the extent of processing involved. Since, there could potentially
be a variety of factors contributing to the slow execution of an algorithm, the source code was examined to
find the execution "hot spots". As illustrated in the simplified pseudocode version of the clutter generation
in Figure 6, the bulk of the workload is in the "loop" section. To confirm this, timing calls were used to
measure execution times as the data dimension increases, as indicated in Figure 7.

PRE-LOOP

LOOP

POST-LOOP

"input op. parameters, choose fit size, allocate memory, set range seed"

ci_get_cltr_vars();
ci_get_cltr_vars3();

"pick lit sizeO;
wrk*=kmaUoc();

set_mg_seedO;
"find location, value of range-azimuth map peak"

rl_get_cltr_ra_map_pkO
"generate clutter data cube"

rl_gen_cltr_rpe_map20:
DO IEUEM=1, N_ELEMENTS

DO IPULSE=1, N_PULSES
DO IANG=1,N_RCVR_RA_MAP_AZPTS

"calculate spatial phase"
Z_ACS_DG=AZ_ARRAY_PCS(IANG>MOD360(AZ_PCS...)

"extract range strobe from range-azimuth map"
DO IR=1, NRA_MAP_RNGPTS
"calculate phase terms and add to clutter"

V_CLTR_SUMaR)=V_CXTR_SUM(IR)+V_CLTR(IR)*
CMPLX(COS(PHI_SPATIAL4-PHI_TEMPORAL),

SIN(PHI_SPATTAL +PHI_TEMPORAL))

END DO
ENDDO
"convolve sequence with transmit pulse"
CONVOLVE(V_CLTR_SUHTX_PULSE_WF,...)

ENDDO
ENDDO
' 'write output cube''
rl_writeiq();

Figure 6

12

IKS&] &*$•**<*

■1«* ^1
1 <"?.■ 5 ~~1 LOOP

3 / ~
l- » /

z /
° 1
*-- 1

X

B-^*I-S«j^«

! •<
1- o

I *'■■
1 1

u.= — \PRE-L00P

BiS':?i»k*-'"J « \-_. !
H ■•■ 'V.'II'---' 1

9 .:V,-.«;v,fl

II 1 \
"DATA SET S°ZE

machine: IBM SP2. 66.5Mhz i,
node: 64MB Memory, 250MB

9f ~ *?*T .T" 1

IB M

- - - - - 'H

Figure 7

The algorithm is timely primarily because of the quantity of operations being performed. The
entire surveillance volume is examined for the computation of each pulse-element point which is calculated
using the standard radar range equation for clutter. The clutter simulation treats each range-angle cell as an
individual point scatterer whose signal strength at the receiver is a function of the backscatter coefficient,
range, atmospheric attenuation, antenna gain, and system gains/losses. The algorithm generates weighted sum
of all the angle cells in a range ring and then convolves the sequence with the transmit pulse. The result is a
sequence that is the sum of time delayed values from the all of the individual point scatterers illuminated by
the transmit pulse.

To investigate the performance of this complex algorithm on the MHPCC SP2 processor, the serial
version of MnClPlse was timed varying pulse and channel dimensions. As Figure 8 illustrates, the User
time follows the System time closely, confirming that the data sizes used in the forthcoming evaluations
will not cause delays in system activity such as paging, swapping, or system calls.

13

Figure 8

BATCH CLUTTER

Two distributed processing techniques were utilized to parallelize MnClPlse and the first utilized
the remote processing "batch" technique discussed in the previous section. This technique consisted of
generating multiple calls to the original serial version of MnClPlse, with each to generate a clutter "slice",
rather than the entire RangePulseElement (RPE) cube, as illustrated in Figure 9. Upon completion, the
RLSTAP client would then launch another process to combine the resultant element slices to form the RPE
cube. Though this technique reduced computation time, the technique was not widely accepted due to its
awkward manual operation.

14

M nCIPlic -i elc
NODE 1

Figure 9

MPI CLUTTER

The Message Passing Interface version of MnClPlse also partitioned work up in the element
dimension, but in a more robust fashion. MPI-Clutter allows RLSTAP clients to substitute the MnClPlse
glyph with the MPI version (MnClMPI) to be invoked on the SP2, as illustrated in Figure 10.

MHPCC SERVER

CLIENT MACHINE

MnClPlse
WORKER 1
NODE 1

MnClPlse
WORKER 2

ODE 2

MnClPlse
WORKER N
NODE N

MPI CLUTTER INTEGRATION

Figure 10

The incorporation of message passing into MnClPlse was fairly straightforward. As mentioned,
the division of labor is performed in the outer "element" do loop and, given that the number of elements
may not always equal the number of processors, the algorithm was implemented in the following manner:

15

*** master ***

DO ielem=l, n_channels

if (ielem .le. numtasks)

"set up element index" MPIJRECV((C_RPE(1,1,ELEM)),.

if (ielem .eq. ielem_stop)

"send out random numbers"

MPI_BCAST(C_RA_MAP()

if (ielem .gt. numtasks)

"wait for open node"

MPI_WAITANY()

"set up element index"

MPIJRECVO

END DO

MPLWAITANY

*** worker***

"receive random numbers"

MPI_BCAST(RA_MAP)

"generate clutter RP slice"

"send the processed channel to master"

MPIJSENDO

MPMVAIT

"receive next channel"

MPI_RECV()

THE TESTING OF MPI CLUTTER

To establish an optimal execution scenario, MnClMPI was evaluated by varying three
characteristics: the communication system, the number of compute nodes, and the data dimensions. The
curves labeled with communication system: "slow" indicate :

• the use of the Internet Protocol (IP) communication between nodes connected via the ethernet

Or "fast" as:

• use of the User Space Protocol (US) communication between nodes connected via the high
performance switch

The following plots are measurements from clutter simulation of the following dimension:

•number of range cells: (N_RCVR_RNGPTS)=790

•number of azimuth points in a range-angle map (N_RCVR_RA_MAP_AZPTS)=256

16

•number of range points in a range-angle map (N_RA_MAP_RNGPTS)=695

•number of pulses (N_PULSES)=256

•number of channels (N_ELEM)=26

The plot in Figure 11 indicates that for relatively small data sizes PulseElement(PE)=(7,7), speedup due to
parallelism is minimal.

mm*m:

wm
SU- ,!**■*. »Aft*,* - w P

-■JU£?-;

>*& «DEÜuH tfc s^<

k32aKü533

^
fcSHi

CLUTTER GENCRAT I ON , MP I IMPLEMENTATION

■m- —

ex

90 — %._
Ü
e _ ^^v_ connun 1 cat. i on ;

~'_ ' ■——^-, .. -
Ul —

l_
communi cat1on: fast

gso-
►- —
=>
o
Ul —
X
Ul _

"* 1 1 1 1 1 1
NUMBER OF" NODES

machine: IBM SP2, 6G.5Mhr
class: small_short
nods: 84MB Memory, 250MB disk
7pulses, 7channels
xx - serial execution: 101.4s

Figure 11

Figure 12, however, indicates a greater speedup, however from 320sec (serial) to about lOOsec (parallel).
Unfortunately performance improvement is almost fully realized at about 30-50% of the nodes available, a
limitation we found throughout the testing of MnClMPI. A possible explanation for this may be NFS-based
disk contention. The plot also reflects that increased number of nodes further distinguishes communication
performance.

17

Bach1no: IBM SP2, 66.5Mhz
class: small_short
nodes: G4MBmem, 250MBdisk
16pulses, 14channels
serial execution: 320,22sec

Figure 12

Figure 13 illustrates a greater improvement for larger data dimensions, for PE=(64,26). The serial version
was timed at 690 seconds while the parallel version took about 250 seconds. Again, as the number of nodes
increased, the fast communication system outperformed the slow system.

18

Figure 13

This MPI-based version provides numerous advantages over both the serial version and the "batch clutter"
version:

• performance, minimal data transport - less internet traffic, data transfer is performed in compiled code

• user interface- user makes only one call to the clutter generation routine, data recombination is handled
with the MPI constructs

FULL SURVEILLANCE VOLUME SIMULATION

The real question is "What kind of performance improvement can be achieved for a 360degree
simulation?" The chart in Figure 14 indicates that for data dimensions of RPE=(790,256,26), the serial
simulation has a duration of 2 hours, 21 minutes, while the parallel version performs in 16 minutes! Since
clutter generation represents over 90% of our simulation experiment, we've linearly scaled the measurements
to the full surveillance volume, (in lOdegree increments). As indicated in the last column our 84 hour serial
run executes in 9 hours running parallel

19

COMPARITIVE EXECUTION TIMES FOR CLUTTER SIMULATION
ROTH SERIAL AND PARALLEL EXECUTION

10 NODES 27 NODES
ESTIMATED
COMPUTATION
TIME 36 DWELLS
(HR:MINI

SERIAL 2:21.00 xxxxx xxxxx 84:36.00

PARALLEL:
SLOW COMM:

THIN NODE 29.20 30.36

WIDE NODE 25.30 18.13 10:54

FASTCOMM-1 THIN NODE 25.13 16.37

WIDE NODE 24.39
16.26 10:02

FASTCOMM-2
THIN NODE 25.24

16.39

WIDE NODE 24.9 16.15 9:45

Figure 14

SUMMARY

The convergence of Khoros-based utilities and High Performance Computing is a natural one with
the power and flexibility bestowed in each and there are countless cooperations between them to be
realized. Remote RLSTAP and MPI Clutter are two offspring from this union which were implemented to
address Advance Early Warning problems. Through this remote batch processing system and the high-
speed clutter generation, remote users can now effectively simulate/process large surveillance volumes of
high fidelity radar data through a user-friendly environment.

In the growing world of expensive commercial client-server development environments this
project is also a refreshing example of the utilization of available resources to attack known DOD problems.
The publicly available Khoros was selected as the parent software environment for RLSTAP, not only for
economical reasons, but because of the novel user interface, extensibility, and large user base. These
features facilitated this project extremely in the areas of graphics, development of the batch processing
model, distributed data organization, and in the distribution of the RLSTAP "clients".

20

3. HPC for Advanced Early Warning
Simulations in RLSTAP

Program Overview

Joe Fogler
Albuquerque High Performance Computing Center (AHPCC)

30 September, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

21

Task Areas

Data compression (Brendan Bradley)

Integration of STAP Matlab
scripts (LLSTAP) into (Steven Jackett)
RLSTAP

Validation of RLSTAP K2
(Khoros2.1)

(Martha Ennis)

Parallelization tools (Ruth Klundt and
Ken Summers)

 Data Compression

Motivation

• Air Early Warning (AEW) radar algorithm development and
testing requires very large amounts of data

• Collaborative development may involve researchers in diverse
geographic locations who need to exchange information

Objectives

• Add lossless data compression capabilities to the RLSTAP
software environment for

- RSTER-like radar data

- Formed SAR images

• Utilize non-proprietary techniques

Data Compression, continued

Approach

Conduct survey of lossless compression techniques

Examine statistical properties of representative data

Identify handful of most promising techniques

Acquire or write standalone C-language data compression codes

Test data compression codes on available data

Downselect to best algorithms for RSTER and SAR data

Write Khoros-compatible software tools (kroutines) for the
RLSTAP environment

22

Integration of LLSTAP into RLSTAP

Motivation

• There are two predominant software development
environments for collaborative algorithm development and
experimentation - Khoros and Matlab

• Little interoperability between these two environments

Objectives

• Provide access to STAP algorithms written in Matlab script
from within Khoros environment

• Investigate porting of scripts to C-language

• Develop an interface for calling scripts directly from Khoros
without code conversion

Integration of LLSTAP into RLSTAP, continued

Code conversion approach

• Determine code hierarchy, dependencies, etc.

• Identity Matlab scripts that represent functions already
implemented by existing Khoros toolboxes

• Determine software object type each Matlab routine should
become (library routine, kroutine, etc.)

• Convert one routine at a time to C-language

• Add Matlab C-extension (cmex) wrapper and test code in the
Matlab environment

• Substitute Khoros wrapper for Matlab cmex wrapper

Integration of LLSTAP into RLSTAP, continued

Approach : calling Matlab scripts from RLSTAP

• Use Matlab Engine Library as software agent

• Determine mapping of Khoros objects to Matlab matrices

- value segment data (e.g., cpi data cube)

- global attributes (e.g., rlstap2_npulses

• Abstract data representation and ordering differences between
Khoros and Matlab

• Write Khoros kroutines with as much general utility as feasible

23

Validation of RLSTAP K2

Objectives

• Check functionality of RLSTAP Khoros 2.1 version and
compare with RLSTAP Khoros 1.0 version

• Focus effort on selected algorithm procedures
- physical model baseline
- conventional beamformer baseline
- joint-domain optimal baseline
- data conversion utilities (e.g., RSTERin)

• Build expertise in the integration of new routines into RLSTAP
environment in support of other tasks

• Test compilation on AIX platforms

Validation of RLSTAP K2, continued

Approach
Familiarization with RLSTAP Kl environment and baseline
workspaces

Construction of RLSTAP K2 workspaces using Kl version
procedures as models

Workspace execution and testing

Analysis of toolbox dependencies for the incorporation of new
tools into RLSTAP K2

Generation of example kroutines utilizing RLSTAP K2
universal I/O libraries

Compilation of RLSTAP K2 universal I/O libraries under AIX
in support of Matlab Engine interface

Full compilation under ADC in support of parallelization effort

Parallelization Tools

Motivation
• As radar sensor resolution and coverage improve, the

throughput demands of radar systems increase

• STAP algorithms require extensive calculation

• Both facts drive the need for High-Performance Computing
(HPC) resources for algorithm development and testing

Objectives
• Provide access to massively parallel HPC resources from

within the RLSTAP graphical programming environment

• Provide an interim solution that is usable immediately

• Target the IBM-SP as the primary operating environment

• Make software tools configurable for multiple platforms

24

Parallel ization tools, continued

Approach

• Design control glyphs (kroutines) to delineate the beginning
and end of parallel glyph compositions

Para-start;
pFFT

pFFT

pMPY Para-submit
|W»tiii#6SWiSii:iigä!.»

Parallel glyphs issue commands that cause remote execution of
corresponding parallel algorithm functions

Route control information between glyphs in Cantata
workspace and data between agents on the parallel system

Utilize Khoros data file format between parallel executable
routines through Khoros Distributed Data Services

Use software agents to handle redistribution of data

Task timelines

Data Compression

Integrate LLSTAP
into RLSTAP

Validation of
RLSTAP K2

Parallelization Tools

Jan Feb Mar Apr May Jun Jul Aug Sep

worn mdmmmmmimmmiä^
genei a! appr >ach

iwim- ■• ■
Mangi age mi ;ration

RST iR datE SAR

Matlab engine interfa(e

L3 L6

RLS TAP K
fami iarizati MI

«iÄplliliBi

aral parallel too develc pment

RL$TAPK2
idation

issst

RLST/Pinteg-ation

mM

25

4. Critical Design Review For Advanced
Signal Processing, Integration of New STAP

Routines into RLSTAP

Marc Friedman
Maui High Performance Computing Center (MHPCC)

Joe Fogler
Steven Jackett

Albuquerque High Performance Computing Center (AHPCC)

7 May, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

26

1 Introduction

The Advanced Signal Processing (ASP) program is a DARPA sponsored activity for studying
advanced processing techniques and technologies for next generation air early warning (AEW)
platforms.1 A key technology area for this activity is software tools and methodologies for col-
laborative algorithm development.

Khoral Research Incorporated (KRI), a spinoff company from the University of New Mexico Elec-
trical and Computer Engineering Department, has created a software integration and development
environment for information processing, data exploration and visualization called Khoros.2 Khoros
is a comprehensive software system with a rich set of tools usable by both end-users and application
developers. Included in these tools is a graphical programming application called Cantata which gives
users the ability to construct complex algorithms by interconnecting iconic representations, called
glyphs, of processing functions in a terminal window called a workspace, using mouse point-and-click
operations. Khoros has become a de-facto standard for collaborative algorithm development in the
Department of Defense automatic target recognition (ATR) community.

The Rome Laboratory Space-Time Adaptive Processing (RLSTAP) tool, utilizing Khoros and its
graphical programming environment Cantata, represents a state-of-the-art development environment
for clutter modeling and radar simulation for advanced early warning (AEW) applications, and has
found use by researchers working on Navy E-2C and the Air Force E-3A upgrades. Written initially
in Khoros version 1.0, RLSTAP is currenly being ported to the latest Khoros release, version 2.1, in

' a separate development.
A number of space-time adaptive processing (STAP) algorithms, developed at Lincoln Labora-

tories, have been prototyped in the Matlab language. These algorithms are to be ported from the
Matlab language to Khoros 2.1 for integration with the RLSTAP environment.

Since Matlab is primarily an interpretive language, skilled programmers seek to avoid explicit
looping constructs which are generally slow. For this and other reasons, programming style differs
between Matlab codes and those of compiled languages such as Khoros. This makes automated
code conversion difficult and results in less than optimal memory usage and execution speed. The
Lincoln Matlab scripts also utilize sparse matrix operations. These are not supported by the current
generation of Matlab script compilers. Thus, the port of Matlab STAP algorithms to C-language
for Khoros under this task will be performed by hand.

2 Scope

2.1 System Overview

This task will involve the integration of two types of STAP algorithms within the Lincoln Lab STAP
algorithm suite - (1) Ajacent Beam Pre-Doppler STAP, and (2) Adjacent Beam Post-Doppler STAP.
These two algorithms represent capabilities that do not currently exist in the RLSTAP environment.
Each STAP algorithm requires approximately 20 separate functions not counting standard math
library functions such as log, exp, sqrt, etc. Of the 20 separate functions, half are common to both
algorithms:

Two forms of integration will be performed. First, an interim capability will be developed by
making the current Matlab scripts for the two STAP algorithms callable from kroutines in Khoros
2.1 using the Matlab engine. This capability will not require any significant code conversion of the
Matlab scripts, however, some data format conversion will be required for the files which must be
exchanged between the Matlab and Khoros environments. These file conversions will be performed
by existing kroutines in RLSTAP, specifically RSTERin and RSTERout.

lG. W. Titi, An Overview of the ARPA/NAVY Mountaintop Program, Proceedings IEEE Adaptive Antenna
Systems Symposium, (1994).

2See KRI'6 website at http://wunu.khoral.com/ for more details.

27

The second form of integration is the actual conversion of the two Lincoln algorithms from Matlab
script to C-language code with Khoros 2.1 wrappers. Each algorithm consists of a number of routines
with different levels of complexity. Some routines will become self-contained Khoros executables,
whereas others may become library routines that are callable by other executables. Still others may
become collections of Khoros executables. Thus each STAP algorithm routine must be categorized
to determine what form of Khoros software object it should assume.

2.1.1 Khoros Routine Categories

There are four types of software routines that will be created under this development, kroutines,
Ikroutines, {routines, and workspaces.

The vast majority of programs written for or supplied with the Khoros environment are krou-
tines. These include all data processing programs such as image processing and signal processing
routines. Kroutines are fully usable from within the Cantata graphical programming environment,
but generally do not display any graphics or images; they simply input data, process it, and output
results. Kroutines may also be invoked without Cantata as ordinary applications under the Unix
operating system, if desired. By convention, kroutines usually have names that begin with the letter
k when invoked from a Unix command line, although their names may appear slightly different when
represented graphically (in an iconic form called a glyph) in a Cantata workspace.

Individual kroutines act as drivers for library routines called Ikroutines where I/O and calculations
are actually performed. A kroutine usually scans its command line arguments into local variables,
opens any needed input and output files, and passes file descriptors and variables to its associated
library Ikroutine. Upon return from the library routine, the files are closed in the kroutine before
exiting.

Other library routines can be added to new or existing libraries that are not directly associated
with any one kroutine. Such {routines may be called from any number of kroutines within a toolbox,
or even from other toolboxes.

Kroutines and other Khoros executables, represented graphically in Cantata workspaces as
glyphs, can be interconnected to implement larger algorithm functionalities. These workspaces can
be loaded and executed from Cantata using simple menu commands. An important feature of Can-
tata workspaces is that command line arguments (i.e. parameter settings) for the various routines
are retained when workspaces are saved.

2.1.2 Algorithm Routine Categories

The STAP algorithm Matlab routines to be ported to Khoros 2.1, can be grouped into categories
based on the degree to which they call other Matlab routines, the type of functionality they represent,
and the amount of computation they perform.

Algorithm routines that call no other routines except intrinsic Matlab functions, which we shall
call low-level routines, will be translated into Khoros lroutines.

Algorithm routines that call the lowest-level routines, but represent a small amount of compu-
tation, not warranting the development of a Khoros kroutine (and its attendant I/O overhead), will
also be ported to Khoros lroutines.

Higher-level algorithm routines that may call other algorithm routines, and represent significant
amounts of computation will be translated into Khoros kroutines.

The highest-level algorithm routines that perform complete algorithm functionalities will be
constructed from groups of lower-level Khoros kroutines and translated into Cantata workspaces.

Some routines performs graphical operations and are strongly dependent on the Matlab environ-
ment for graphics and display. These functionalities will be performed by built-in visualization tools
found jn the Envision toolbox supplied with Khoros.

28

2.2 Limitations

The resources and time available for converting the two Lincoln STAP algorithms in their entirety
by hand may not be sufficient to complete the task. Therefore, this task represents a best effort to
complete the conversion of as many routines as possible using available resources within the allotted
time.

The order in which the STAP algorithms will be translated will ensure that one complete algo-
rithm functionality is obtained, as opposed to achieving partial functionality on both algorithms.

A small number of Matlab scripts included with the STAP algorithm suite perform graphics
operations that are specific to the Matlab environment. Portions of the script code are implementable
as built-in visualization tools that come with the Khoros distribution. Other scripts represent
mixtures of calculation and graphics. The functionality of these scripts will be partitioned into
separate software objects in Khoros.

The current Matlab 4.2 release, and all previous releases, perform all calculations in double
precision. In the port to Khoros 2.1, calculations that can be performed as integers will be performed
as integers, and all calculations that require floating-point will be performed in one type of float
precision.

Since RLSTAP is currently supported under the two operating environments, AIX on IBM
RS6000 computers, and SunOS or Solaris on SUN SPARC computers, the Khoros STAP routines
will be designed for compatibility with these platforms. The routines may also be compatible with
other platforms, but this will not be tested.

3 Reference Documents

Software routines to be written for use in Khoros will be developed using case tools built into Khoros.
These include craftsman which is used for the creation and management of collections of routines
called toolboxes, composer which is used to edit, manipulate, and compile existing software objects
(e.g. kroutines), and guise which is used to edit graphical user interface (GUI) objects (e.g. panes
and forms). These case tools are described in Chapters 2, 3, and 4, respectively, in the Khoros 2.1
Toolbox Programming Guide.

All file I/O performed by routines written in Khoros will be implemented using Khoros data
services routines. These are described in the Khoros 2.1 Data Services Guide.

Documentation of the STAP algorithm tools will be provided in three forms - man pages, on-line
help, and a printed manual.

Man pages will serve as on-line documentation for both users and programmers, describing
functionality, and usage of the various programs and utilities. Khoros man pages are accessable to
the user via the kman command which is similar in operation to the standard Unix man command.

On-line help is accessible by the user via a Help button on the graphical user interface pane that
can be displayed from within the Cantata graphical programming environment. The information
provided through the Help button is similar to that obtainable from man pages.

The printed manual will provide a hardcopy representation of the documentation and encap-
sulate much of the documentation into an integrated whole. The tools to support printed manual
documentation are embedded within the Khoros imake system, which provides several macros for
including man pages, code segments, and function descriptions.

A description of documentation facilities within Khoros is provided in Chapter 6 of the Khoros 2.1
Toolbox Programming Manual Examples of documentation generated using these built-in facilities
can be found throughout that manual.

This software task will utilize existing kroutines that perform file conversion between Matlab file
format files and Khoros KDF files. These routines will include RSTERin and RSTERout which are
described in the on-line man pages of the RLSTAP-K2 environment.

29

4 Design

4.1 Software Development Plan

Software development will be performed in two stages. In the first stage, kroutines will be devel-
oped that will allow calls to the Adacent-Beam Post-Doppler NscripLpostbU.m and Adjacent-Beam
Pre-Doppler NscripLprebU.m Matlab scripts. These two algorithms will be executed as Matlab
scripts using a language C coded interface which will run only the necessary computational engine
components of Matlab, thus saving the overhead involved in display and human interaction.

Input and output files to these new kroutines will be in Matlab format. The existing RLSTAP
kroutines RSTERin and RSTERout will be utilized to convert these files to/from Khoros format
(KDF) for compatibility with other RLSTAP routines. Thus, when the new kroutines are utilized
in a RLSTAP Cantata workspace, they will be bracketed by calls to RSTERin and RSTERout.

In the second stage, workspaces, kroutines, and Ikroutines will be developed for performing STAP
processing using compiled versions of the Adjacent-Beam Post-Doppler and Adjacent-Beam Pre-
Doppler algorithms, converted from Matlab to the C language with Khoros 2.1 wrappers.

The development of these workspaces and routines will involve the following steps:

1. analysis and patitioning of algorithm functionalities into Khoros software object types (e.g.
kroutines, Ikroutines),

2. coding of C-language algorithm functions callable from Matlab,

3. testing C-language algorithm functions in Matlab,

4. migration of C-language algorithm functions to Khoros

5. coding and verification of Khoros-style test suite for ensuring correct compilation on future
software installations, and

6. generation of man pages, on-line help, and printed manual documentation.

4.2 Data Description

Two distinct file types will be utilized in input/output pairs in the development. Kroutines that
call the Matlab engine to execute Matlab script versions of the STAP algorithms will use a Matlab
matrix file format. Input files will contain raw Coherent Pulse Interval (CPI) matrices and output
output files will contain processed signals (plpsignal). Both will contain ancillary arrays supplied
to and/or generated by the algorithms. For convenience, in subsequent sections, Matlab input files
are referred to as CPI-Matrix files, and Matlab output files that contain processed data are referred
to as SIG-Matrix files.

Kroutines that call C-language versions of the algorithms will utilize the Khoros native KDF file
format. On input, the CPI matrices will be stored in KDF value segment, and ancillary arrays will
be stored in user-defined KDF attributes. On output, processed signals will be stored in the value
segment, and ancillary arrays will again be stored in user-defined attributes. For convenience, in
subsequent sections, KDF input files are referred to as KDF-CP1files and KDF output files that
contain processed data are referred to as KDF-SIG files.

4.2.1 CPI-Matrix Files

Each CPI-matrix file is composed of one or more cpi matrices, and a number of ancillary arrays and
scalar values, all stored as a sequence of Matlab version 4.2 matrices.

A Matlab version 4.2 matrix file contains one or more matrices each consisting of a 20-byte
header, followed by a matrix name string, followed by actual matrix data. Each matrix is stored
sequentially and contiguously in the file.

30

The Matlab header consists of five 4-byte signed integers that define, in order, (1) the matrix
tyPei (2) number of rows in the matrix, (3) number of columns in the matrix, (4) whether the matrix
is real or complex, and (5) the length of the matrix name including a NULL terminator character.
The matrix type encodes the precision and data type of the matrix data, the machine architecture
upon which the data was generated, and whether the matrix is sparse, numeric, or contains text.
All the matrices in this application are either numeric or textual.

All matrices are stored as type double (real or complex) data values in memory within Matlab.
However, to reduce storage requirements when large matrices are stored to files using the Matlab
save command, data is converted to a data type that requires fewer bytes-per-item where possible
according to an internal algorithm. For example, if all data within a real type double matrix are
integral values (i.e. representable as integers), and are bounded by the representable range of 32-bit
signed integers, the data is converted to and stored as 32-bit signed integers, automatically when
saved. If all data are integral and bounded by the representable range of 16-bit signed integers, the
data is converted to and stored as 16-bit signed integers. Complex data, are similarly converted
where the real and imaginary components are tested independently against the bounds.

The cpi arrays, which constitute a high percentage of the storage requirements of a CPI file,
are complex data with real and imaginary components each stored as 32-bit signed integers. The
Matlab format places all the real components of a matrix first in the file followed by all its imaginary
components.

Although the number and type of ancillary arrays may vary from file to file, each file contains at
least one cpi# array where the first array has the name cpil. A typical CPI-Matrix file containing
5 cpi's is shown in the following table.

31

Matrix name Shape Type Integral Values
muxtype scalar real yes
trecord scalar real yes
wrecord scalar real yes
cpitype vector real yes
cpiidx vector real yes
scanidx vector real yes
npulses vector real yes
fxmit vector real no
pri vector real no
tpulse vector real no
elxmit vector .real no
azxmit vector real no
cpitime matrix real no
cpil matrix cplx yes
cpi2 matrix cplx yes
cpi3 matrix cplx yes
cpi4 matrix cplx yes
cpi5 matrix cplx yes
flgRound scalar real yes
flgChopTVans scalar real yes
calflag scalar real yes
flgEqualize scalar real yes
flgCalibrate scalar real yes
nCPI scalar real yes
CurrFVeq scalar real no
ant_tilt scalar real no
rster_alt scalar real no
rsterJat scalar real no
rsterJon scalar real no
rster-pow scalar real no
info matrix text n/a 1

The number of cpi arrays in the file is stored in the scalar variable nCPI. The vectors cpitype,
cpiidx, scanidx, npulses, fxmit, pri, tpulse, elxmit, and azxmit are all of length nCPI. The matrix
cpitime is composed of nCPI rows and six columns and contains time information stored as real
numeric values. The info array is textual and is composed of a number of rows of 80-column text
strings with each character represented as an ASCII code stored one per each matrix item.

4.2.2 SIG-Matrix Files

Each SIG-matrix file is composed of a plpsignal matrix, and a number of ancillary arrays and scalar
values, all stored as a sequence of Matlab version 4.2 matrices.

The plp.signal array, which constitutes a high percentage of the storage requirements of a SIG
file, has complex data with real and imaginary components stored in type double floating-point
format. The Matlab file format places all the real components of the signal in the file before all of
its its imaginary components.

A typical SIG-Matrix file is shown in the following table.

32

Matrix name Shape Type Integral Values
pip-Signal matrix cplx no
plp_order vector text n/a
dpriJength scalar real yes
delJength scalar real yes
drngrJength scalar real yes
dopp_values vector real no
angles vector real no
drngr.values vector real no
nrm.typ vector text n/a

. The plpsignal array is stored as a two-dimensional complex matrix, although it is actually a
three-dimensional data cube. The plpsignal data cube may be stored in one of six orientation's, as
specified by the order string plp-order.

The plp.order string can assume six values. These are assigned indices indicated in the table for
convenience. The index zero is added to handle cases where an invalid order string is encountered.

Order Index Order String
0 (invalid order string)
1 "channel sample pri"
2 "channel pri sample"
3 "sample channel pri"
4 "sample pri channel"
5 "pri sample channel"
6 "pri channel sample"

The number of rows and columns in the plpsignal matrix (as stored in the Matlab file) are a
function of the values deLlength, dprLlength, drngrJength and the order string plp-order, as indicated
in the following table.

Order String Row Dimension Col Dimension
"channel sample pri" deLlength*dmgrJength dpriJength
"channel pri sample" deLlength*dprLlength drngrJength
"sample channel pri" drngrJength*delJength dpriJength
"sample pri channel" drngrJength*dprLlength delJength
"pri sample channel" dpriJength*drngrJength delJength
"pri channel sample" dpriJength*deLiength drngrJength

The length of vectors in the SIG file are indicated in the following table:

Vector Length
plp-order
dopp.values
angles
drngr.values
nrm-typ

18
dpriJength
delJength
drngrJength
3

The plp-order and nrm-typ arrays are textual and are composed of ASCII codes stored as one
character per each array item, with no terminating NULL character.

33

4.2.3 CPI-KDF Files

There are a number of differences between the Matlab matrix file format and the Khoros native KDF
file format. Matlab stores data in column-major order wheras Khoros stores data in row-major order.
This means that the rows and columns of two-dimensional objects are transposed. The current
version of Matlab only supports one and two-dimensional arrays whereas Khoros supports arrays
up to five dimensions. The Khoros value segment, where large arrays are usually stored, requires
that multiple arrays be of the same dimensions, whereas in Matlab, multiple arrays are treated as
separate objects and need not have the same dimensions. Matlab files can contain complex integers
whereas Khoros only supports float complex and double comples data types. Moreover, Matlab
stores all the real values of a complex matrix followed by its imaginary values whereas Khoros stores
real and imaginary components of complex data as interleaved pairs. These differences impose a
number of contraints on how the CPI data can be stored in Khoros KDF format.

Although it is technically feasible to have CPI arrays of different dimensions within the same
data file, no files of this type are known to exist. Thus, CPI arrays of different sizes within the same
file are considered an error condition by the RLSTAP_K2 file I/O infrastructure. This limitation is
consistent with the Khoros 2.1 polymorphic model which requires that the arrays be of the same
dimensions when stored in the value segment.

Although the cpi arrays are stored as two-dimensional matrices in Matlab, they are actually
three-dimensional data cubes. Using the Khoros data services nomenclature for the dimensions of
objects in the value segment, the width, height, and depth dimensions of the cpi arrays are computed
as follows, using a combination of their Matlab dimensions and information from ancillary variables:

depthi = ncolsi (1)

height, — npulsesi (2)

widthi — mrowsi -f- height, (3)

Thus, the cpi arrays are stored as a sequence of equal-sized three-dimensional data cubes in the
value segment with the sequence index represented as the fourth value segment dimension called
time in the Khoros nomenclature.

Khoros does not directly support complex integer data types. Thus, when files are converted
from Matlab to Khoros KDF, complex integers must be converted to either complex float kcomplex
or complex double kdcomplex.

A typical set of KDF file attributes needed to store cpi files (excluding standard attributes defined
for the value segment) are given in the following table. Each attribute has an implied prefix rlstap2_
which is automatically added to the names listed in the table by RLSTAP-K2 I/O routines when
operations are performed on attributes.

34

Variable Attribute Shape Datatype
muxtype "muxtype" scalar integer
trecord "trecord" scalar integer
wrecord "wrecord" scalar integer
cpitype "cpitype" vector integer
cpiidx "cpiidx" vector integer
scanidx "scanidx" vector integer
npulses "npulses" vector integer
fxmit "fxmit" vector double
pri "pri" vector double
tpulse "tpulse" vector double
elxmit "elxmit" vector double
azxmit " azxmit" vector double
cpitime "cpitime" matrix real
- "cpitime_size" scalar x 2 integer
flgRound "flgRound" scalar integer
flgChop Trans "flgChopTrans" scalar integer
calflag "calflag" scalar integer
flgEqualize "flgEqualize" scalar integer
flgCalibrate "flgCalibrate" scalar integer
nCPI "nCPP scalar integer
CurrPreq "CurrPreq" scalar double
ant_tilt "ant_tilt" scalar double
rster_alt "rster_alt" scalar double
rsterJat "rsterJat" scalar double
rsterJon "rsterJon" scalar double
rster_pow "rster_pow" scalar double
info "info" matrix char
- "info_size" scalar x 2 integer

More or fewer attributes than those listed in the table may appear in any given CPI file. Thus,
the standard approach for performing I/O on attributes is to first perform an opaque copy of the
input file attributes to the output file, and then modify attributes that need to be updated in the
output file. This ensures that any newly-defined attributes are propagated from file to file.

4.2.4 SIG-KDF Files

The pipsignal matrix will be stored in the value segment, with its real and imaginary components
interleaved, as a three-dimensional object. All other matrices, representing ancillary information,
will be stored as user-defined attributes.

The dimensions of the pipsignal data cube, as stored in the value segment, will depend on the
values of dpriJength, deLlength, drngrJength, and pip-order, according to the following table:

Order String Width Height Depth
"channel sample pri" delJength drngrJength dpriJength
"channel pri sample" deLlength dpriJength drngrJength
"sample channel pri" drngrJength delJength dpriJength
"sample pri channel" drngrJength dpriJength delJength
"pri sample channel" dpriJength drngrJength delJength
"pri channel sample" dpriJength delJength drngrJength

A typical set of KDF file attributes needed to store SIG files (excluding standard attributes

35

defined for the value segment) are given in the following table. As in CPI files, all attributes have
the prefix rlstap2^ which is automatically added by the RLSTAP.K2 file I/O routines.

Variable Attribute Shape Datatype
muxtype "muxtype" scalar integer
plp_order "plp_order" vector char
dpriJength "dpriJength" scalar integer
delJength "del-length" scalar integer
drngrJength "drngrJength" scalar integer
dopp_values "dopp_values" vector double
angles "angles" vector double
drngr_values "drngr_values" vector double
nrm_typ "nrm.typ" vector char

The variables pip-order and nrm-typ are stored in user-defined Khoros attributes as NULL
terminated strings.

4.3 Modules

Software modules that execute the STAP algorithms as Matlab scripts are described in the following
subsection. Software modules that represent Khoros C-language versions of the algorithms are
described in a later subsection.

4.3.1 List of modules that execute Matlab STAP algorithms

The kroutines for executing the Adjacent-Beam Post-Doppler and Pre-Doppler algorithms are as
follows:

Khoros routine Khoros type Comments
mxAdjBeamPostDop kroutine
mxAdjBeamPreDop kroutine

adjacent beam post doppler algorithm
adjacent beam pre doppler algorithm

Kroutines listed in the previous table represent driver routines that will call library routines that
perform the actual work. These library routines will invoke the Matlab engine to load and execute
the Matlab scripts associated with the appropriate STAP algorithms.

Library Routine Called By Related Matlab Script
lmxAdjBeamPostDop mxAdjBeamPostDop Nscript-postbU.m
lmxAdjBeamPreDop mxAdjBeamPreDop Nscript-prebU.m

The Matlab script NscripL.pastbU.rn will in turn call the following Matlab scripts. Calls to these
scripts will be opaque to the calling Ikroutine.

NSTvands.m
Npostb_Trans.m
NatrainSl.m
Npstag_adapt.m

Nwgt_norm.m
Napply_wts.m
Npostb_Trans.m

Nmbin_Trans.m
Nwgt_norm.m

Napply_wtE.m

36

chebwgt.m
cztlds.m
dftmtx.m
rearrange_plp.m
globify_plp.m

The Matlab script Nscript-prebU.m will call the following Matlab scripts. Calls to these scripts
will be opaque to the calling Ikroutine.

NSTvands.m
Npreb_Trans.m

NatrainSl.m

Npreb_adapt.m

Nwgt_norm.m

Napply_wts.m

Npreb_Trans.m

Npred_trans.m

Nwgt_norm.m

Napply_wts.m

chebwgt.m

cztlds.m
dftmtx.m

rearrange_plp.m

globify_plp.m

Each of the scripts listed above are provided with the Lincoln Lab Matlab STAP software dis-
tribution.

4.3.2 List of modules that process CPI data

Khoros workspaces for STAP processing of CPI data using the Adjacent-Beam Pre-Doppler and
Post-Doppler algorithms will include:

Khoros routine Khoros type Matlab script Script option
AdjBeamPostDop.wksp workspace Do_script.m
AdjBeamPreDop.wksp workspace Do.script.m

Nscript-postbU.m
Nscript-prebU.m

Khoros kroutines for STAP processing of CPI data via the two algorithms will include:

Khoros routine Khoros type Matlab script Comments
kadjbeampostdop kroutine
kadjbeampredop kroutine

Nscript-postbU.m
Nscript-prebU.m

adj-bearn post-doppler
adj-beam pre-doppler

The above kroutines will act as drivers that call associated library lkroutines. These library rou-
tines may call lower-level library routines including routines that perform intrinsic Matlab functions.

The following, two tables list the higher-level libary routines and the lower-level library routines,
respectively.

Library Routine Called By Related Matlab Script
lkadjbeampostdop
lkadjbeampredop

kadjbeampostdop Nscript-postbU.m
kadjbeampredop Nscript-prebUjn

37

Library Routine Called By Related Matlab Script
lnpstagadapt lkadjbeampostdop Npstag_adapt.m
lnprebadapt lkadjbeampredop Npreb-adapt.m
Inpostbtrans lkadjbeampostdop Npostb-Trans.m
lnprebtrans lkadjbeampredop Npreb-Trans.m
lnpredtrans lkadjbeampredop Npred-Trans.m
lnmbintrans lkadjbeampostdop Nmbin-Trans.m
lnatrainsl lkadjbeampostdop,

lkadjbeampredop
NatrainSl.m

lnstvands lkadjbeampostdop,
lkadjbeampredop

NSTvands.m

lnwgtnorm lkadjbeampostdop,
lkadjbeampredop,

Nwgt_norm.m

lnapplywts lkadjbeampostdop,
lkadjbeampredop

Napply_wts.m

lchebwgt lkadjbeampostdop,
lkadjbeampredop,

chebwgt.m

lcztlds lchebwgt cztlds.m
ldftmtx lnstvands dftmtx.m
lrearrange lkadjbeampostdop,

lkadjbeampredop
rearrange-plp.m

Itranspose lrearrange, etc. Matlab intrinsic "'"
lsort lmprebtrans Matlab intrinsic sort.m
+ lkfft lcztlds fft.m, ifft.m (intrinsic)

The lkroutines marked with plusses in the previous table represent library routines that are
included with the Khoros software distribution.

In the following subsections, each workspace, kroutine, and library routine for STAP processing
is described in detail.

4.3.3 AdjBeamPostDop.wksp

Purpose:
The purpose of the workspace AdjBeamPostDop.wksp is to implement a adj-beam post-doppler

beamformer.
Process:

AdjBeamPostDop.wksp will contain a number of interconnected glyphs that perform an equivalent
functionality to the Matlab-based Do.script.rn script executing the Nscript-postbU.m option.
Interfaces:

The AdjBeamPostDop.wksp workspace will utilize Cantata's ability to store all glyph parame-
ters. These parameters will be entered graphically using each kroutine's pane window from within
Cantata, before the workspace is created as a file.

The user will be able to execute the workspace as-is, or may edit parameters at will before
execution. Detailed descriptions of the kroutine parameters are provided in the subsections that
describe the individual routines.
Variable definitions:

Variables are abstracted from the user at this level. See the document subsections that describe
individual routines for more information.
Routines called from AdjBeamPostDop.wksp:

AdjBeamPostDop.wksp will execute the following glyphs:

RSTERin (RLSTAP_K2 file I/O intrinsic)

38

PC (RLSTAP_K2 pulse compression intrinsic)

kadjbeampostdop

4.3.4 AdjBeamPreDop.wksp

Purpose:
The purpose of the workspace AdjBeamPreDop.wksp is to implement a adj-beam pre-doppler

beamformer.
Process:

AdjBeamPreDop.wksp will contain a number of interconnected glyphs that perform an equivalent
functionality to the Matlab-based Doscript.m script executing the Nscript-prebU.m option.
Interfaces:

The AdjBeamPreDop.wksp workspace will utilize Cantata's ability to store all glyph parame-
ters. These parameters will be entered graphically using each kroutine's pane window from within
Cantata, before the workspace is created as a file.

The user will be able to execute the workspace as-is, or may edit parameters at will before
execution. Detailed descriptions of the kroutine parameters are provided in the subsections that
describe the individual routines.
Variable definitions:

Variables are abstracted from the user at this level. See the document subsections that describe
individual routines for more information.
Routines called from AdjBeamPreDop.wksp:

AdjBeamPreDop.wksp will execute the following glyphs:

RSTERin (RLSTAP_K2 file I/O intrinsic)
PC (RLSTAP_K2 pulse compression intrinsic)
kadj beampredop

4.3.5 kadjbeampostdop and lkadjbeampostdop

Purpose:
The purpose of kadjbeampostdop is to implement an adj-beam post-doppler STAP beamformer.

Process:
Kadjbeampostdop is a driver program that opens the input and output KDF files and calls the

lkadjbeampostdop library routine where the actual work takes place.
The lkadjbeampostdop library routine inputs attributes and cpi data from the input file, performs

the beamforming algorithm, and writes attributes and processed cpi (sig) data to the output file.
Interfaces:

The kadjbeampostdop routine utilizes the command line user interface (CLUI) facilities built into
Khoros and detailed in the Khoros 2.1 Toolbox Programming Guide.

Command line arguments specific to the kadjbeampostdop routine are as follows:

Argument Type Description
-i infile Input data object
-o outfile Output data object

Variable definitions:
The kadjbeampostdop kroutine utilizes the variables src and dest
The variable src, of type kobject, is a pointer to a structure returned by the call to kpds-open-input-object

which is used to open the input file. The variable src is used as a file descriptor by subsequent calls
to Khoros data services routines.

39

The variable dest, of type kobject, is a pointer to a structure returned by the call to kpds-open-outpuLobject
which is used to open the output file. The variable dest is used as a file descriptor by subsequent
calls to Khoros data services routines.
Routines called from kadjbeampostdop:

The Ikadjbeampostdop libary routine is opaque from command line execution of the kadjbeam-
postdop kroutine. Its formal parameters are as follows:

Argument Type Description
src kobject Input object descriptor
dest kobject Output object descriptor

Other routines calle d by library routine Ikadjbeampostdop are:

lnpstagadapt
lnpostbtrans
lnatrainsl
lnstvands
lchebwgt
lnwgtnorm
lnapplywts
ldftmtx
lczlds
lrearrange

These routines are described in later sections.

4.3.6 kadjbeampredop and lkadjbeampredop

Purpose:
The purpose of kadjbeampredop is to implement an adj-beam pre-doppler STAP beamformer.

Process:
Kadjbeampredop is a driver program that opens the input and output KDF files and calls the

lkadjbeampredop library routine where the actual work takes place.
The lkadjbeampredop library routine inputs attributes and cpi data from the input file, performs

the beamforming algorithm, and writes attributes and processed cpi (sig) data to the output file.
Interfaces:

The kadjbeampredop routine utilizes the command line user interface (CLUI) facilities built into
Khoros and detailed in the Khoros 2.1 Toolbox Programming Guide.

Command line arguments specific to the kadjbeampredop routine are as follows:

Argument Type Description
-i infile Input data object
-o outfile Output data object

Variable definitions:
The kadjbeampredop kroutine utilizes the variables src and dest.
The variable src, of type kobject, is a pointer to a structure returned by the call to kpds-open-inpuLobject

which is used to open the input file. The variable src is used as a file descriptor by subsequent calls
to Khoros data services routines.

The variable dest, of type kobject, is a pointer to a structure returned by the call to kpds-open-output-object
which is used to open the output file. The variable dest is used as a file descriptor by subsequent
calls to Khoros data services routines.
Routines called from kadjbeampredop:

40

The Ikadjbeampredop libary routine is opaque from command line execution of the kadjbeampredop
kroutine. Its formal parameters are as follows:

Argument Type Description
src
dest

kobject Input object descriptor
kobject Output object descriptor

Other routines called by library routine Ikadjbeampredop are:

lnprebadapt

lnprebtrans

lnpredtrans

lnatrainsl

lnstvands

lchebwgt

lnwgtnorm

lnapplywts
ldftmtx

lcztlds
Prearrange
lsort

These routines are described in later sections.

4.3.7 Inpstagadapt

Purpose:
The library routine Inpstagadapt implements the functionality of the Matlab script Npstag-adapt.m.

Process:
This routine implements PRI-staggered STAP transform domain adaptive nulling.

Interfaces and variable definitions:
Formal parameters for the Inpstagadapt routine are given in the following table:

Argument Type Description
deLlength integer delay length
dprLlength integer pri length
drngrJength integer drngr length
plp_signal kdcomplex * signal data cube
iorder integer input order index
T double * pstag transf
V double * S-T sv's
train integer * trn gate list
ndop integer length of dopp_values array
dload double power in dB
weights double * data cube of computed weights

Other routines called:

lkrearrange

41

4.3.8 lnprebadapt

Purpose:
The library routine lnprebadapt implements the functionality of the Matlab script Npreb^adapt.m.

Process:
This routine implements adj-Beamspace STAP transform domain adaptive nulling. It is almost

identical in function to Inpredadapt.
Interfaces and variable definitions:

Formal parameters for the lnprebadapt routine are given in the following table:

Argument Type Description
delJength integer delay length
dpriJength integer pri length
drngrJength integer drngr length
plp_signal kdcomplex * signal data cube
iorder integer input order index
T double * pstag transf
V double * S-T sv's
train integer * trn gate list
nsubc integer number of pulses per sub-CPI
tmp_wts double * temporal taper weights
plp.prf double pulse reptition frequency
dload double power in dB
sub-tpr double * sub-CPI sv taper (e.g. binomial)

Other routines called:

ldftmtx
lkrearrange

4.3.9 lnpostbtrans

Purpose:
The library routine lnpostbtrans implements the functionality of the Matlab script Npostb-Trans.m.

Process:
This routine generates the characteristic STAP transformation for the adjacent-beam post-

Doppler (multi-bin) algorithm.
Interfaces and variable definitions:

Formal parameters for the lnpostbtrans routine are given in the following table:

Argument Type Description
dpriJength integer pri length
delJength integer delay length
nsubP integer number of Doppler bins per bin subset
nsubB integer number of beams per beam subset
tmp.wts double * temporal taper weights
plp_prf double pulse reptition frequency
V double * beam set
IkJdx integer * flag vector
T double * returns pstag transf array
dopp-values double * returns dopp values array

Other routines called:
42

lnmbintrans

lsort

4.3.10 lnprebtrans

Purpose:
The library routine lnprebtrans implements the functionality of the Matlab script Npreb-Trans.m.

Process:
This routine generates the characteristic STAP transformation for the adjacent-beam pre-Doppler

algorithm.
Interfaces and variable definitions:

Formal parameters for the lnprebtrans routine are given in the following table:

Argument Type Description
dpriJength integer pri length
delJength integer delay length
nsubP integer number of Doppler bins per bin subset
nsubB integer number of beams per beam subset
V double * beam set
lkJdx integer * flag vector
T double * returns pstag transf array

Other routines called:

lnpredtrans

lsort

4.3.11 lnpredtrans

Purpose:
The library routine lnpredtrans implements the functionality of the Matlab script NpredLTrans.m.

Process:
This routine generates the characteristic STAP transformation for the pre-Doppler algorithm.

Interfaces and variable definitions:
Formal parameters for the lnpredtrans routine are given in the following table:

Argument Type Description
dpriJength integer pri length
delJength integer delay length
nsubc integer number of sub CPIs
T double * returns pstag transf array

Other routines called:

(none)

4.3.12 lnmbintrans

Purpose:
The library routine lnmbintrans implements the functionality of the Matlab script Nmbin. Trans, m.

Process:
This routine generates the characteristic STAP transformation for the multi-bin post-Dpppler

algorithm.
Interfaces and variable definitions:

Formal parameters for the lnmbintrans routine are given in the following table:

43

Argument Type Description
dpriJength integer pri length
delJength integer delay length
nsubc integer number of sub-CPIs
tmp_wts double * temporal taper weights
plp-prf double pulse reptition frequency
T double * returns pstag transf array
dopp_values double * returns dopp values array

Other routines called:

ldftmtx

4.3.13 lnatrainsl

Purpose:
The library routine lnatrainsl implements the functionality of the Matlab script NatrainSl.m.

Process:
This routine constructs a sliding training set to fix existing data with supplied parameters.

Interfaces and variable definitions:
Formal parameters for the lnatrainsl routine are given in the following table:

Argument Type Description
begin_rng double begin range of interest (km)
end_rng double end range of interest (km)
nom-grd integer guard band gates
nom-trn integer trn rgn, no. samples (even)
nom_rgn integer tgt rgn width
drngr_values double * drngr value array
train double * training set array

Other routines called:

(none)

4.3.14 lnstvands

Purpose:
The library routine lnstvands implements the functionality of the Matlab script NSTvands.m.

Process:
This routine generates Space-Time vandermonde steering vectors for specified look angles.

Interfaces and, variable definitions:
Formal parameters for the lnstvands routine are given in the following table:

Argument Type Description
tdlam double time delay parameter
angles double * array of angles
dprUength integer dpri length
deLlength integer del length
spat_wts. double * spatial weights
V double * vandermonde vectors

Other routines called:

44

4.3.15 lnwgtnorm

Purpose:
The library routine lnwgtnorm implements the functionality of the Matlab script Nwgt-.norm.rn.

Process:
This routine normalizes space-time weights.

Interfaces and variable definitions:
Formal parameters for the lnwgtnorm routine are given in the following table:

Argument Type Description
weights double * weight array [input and output]
T double time period
ndop integer number of Doppler bins
nrm_flg char * normalization flag ["CGN" or "CGT"]
spat_wts double * spatial weights
V double * vandermonde vectors

Other routines called:

4.3.16 lnapplywts

Purpose:
The library routine lnapplywts implements the functionality of the Matlab script Napply-wts.m.

Process:
This routine applies space-time weights to space-time data.

Interfaces and variable definitions:
Formal parameters for the lnapplywts routine are given in the following table:

Argument Type Description
weights double * S-T weight array
T double time period
ndop integer number of Doppler bins
train integer * train table
drngr_values double * drngr values
plpjsignal kdcomplex * pip signal matrix
order integer * order index
deLIength integer * del length
dmgrJength integer * drngr length
dprLlength integer * dpri length

Other routines called:

lkrearrange

4.3.17 Ichebwgt

Purpose:
The library routine Ichebwgt implements the functionality of the Matlab script chebwgt.m.

Process:
This routine calculates the Chebyshev weights using a chirp-z transform.

Interfaces and variable definitions:
Formal parameters for the Ichebwgt routine are given in the following table:

45

Argument Type Description
nel
slob
wgt

integer desired length
double side-lobe level in dB
double array of Chebychev weights (normalized)

Other routines called:

cztlds

4.3.18 lcztlds

Purpose:
The library routine lcztlds implements the functionality of the Matlab script cztlds.m.

Process:
This function calculates Chebychev weights for either odd or even numbers of weights using the

chirp-z transform.
Interfaces and variable definitions:

Formal parameters for the lcztlds routine are given in the following table:

Argument Type Description
array double * input sequence
nx integer input length
nupts integer output length
umin double * begining of chirp-z transform
umax double * ending of chirp-z transform
beta double beta parameter
isign integer sign parameter
wgt double * output sequence of length nupts

Other routines called:

lkfft
lkifft

4.3.19 Idftmtx

Purpose:
The library routine Idftmtx implements the functionality of the Matlab script dftmtx.m.

Process:
This function forms a NxN Discrete Fourier Transform matrix consisting of values around the

unit-circle whose inner product with a column vector of length N.yields the discrete Fourier Trans-
form of the vector.
Interfaces and variable definitions:

Formal parameters for the lcztlds routine are given in the following table:

Argument Type Description
integer size of square matrix
double * returns DFT matrix values

Other routines called:

(none)

46

4.3.20 krearrange and lkrearrange

Purpose:
The purpose of krearrange is to rearrange the orientation of one or more three-dimensional data

cubes located in the value segment of a KDF file. This routine works for both SIG and CPI files.
Process:

Krearrange is a driver program that opens the input KDF file for reading using the the Khoros
data services kpds.open.input.object kroutine, and opens the output KDF file object using the the
Khoros data services kpds-open-outpuLobject routine. The user can specify, via a command line
parameter, whether the input orientation of the three-dimensional cubes is to be obtained from an
examination of the "order" attribute of the input file, or from a user specified order. A second
command line parameter specifies the desired output order of the three-dimensional data cubes.

The actual work is performed by the library routine lkrearrange which accepts the input and
output file descriptors and command line options from krearrange, performs the operations, and
returns.

First the attributes of the input object are copied to the output object, with the size information
updated to reflect the new data cube orientation. Then, the data is read, processed, and written
one three-dimensional cube at a time.
Interfaces:

The krearrange routine utilizes the command line user interface (CLUI) facilities built into
Khoros. Details of these automated facilities and capabilities are provided in the Khoros 2.1 Toolbox
Programming Guide.

Command line arguments specific to the krearrange routine are as follows:

Argument Type Description
-l infile Matrix input data object
-0 outfile Resulting output data object
-oorder list output order index [1 ... 6]
[-iorder] list input order index [0, 1, ... 6]

default 0 = derive from object

For the meaning of order indices in the range [1 ... 6] in this context, see the table of order
indices in Section 4.2.1 of this document.
Variable definitions:

The krearrange kroutine utilizes the variables src, iorder, oorder, and dest.
The variable src of type kobject is used by Khoros data services routines to access the input file

object.
The integer variable iorder is used to specify the input order of the data cubes in the value

segment. If iorder is zero (default), the input order is to be obtained from the input object "order"
attribute. If iorder is not zero, it is used as an assumed input order.

The integer variable oorder is used to specify the desired output order of the data cubes in the
value segment.

The variable des*of type kobject is a pointer to a structure returned by the call to kpds-open-outpuLobject
and is used as a file descriptor by Khoros data services routines to access the output file.
Routines called from krearrange:

The lkrearrange library routine is opaque from command line execution of the krearrange kroutine.
Its formal parameters are as follows:

Argument Type Description
src kobject Input object descriptor
iorder integer Input order index [0, 1, ... 6
oorder integer Ouput order index [1 ... 6]
dest kobject Output object descriptor

47

4.3.21 Itranspose

Purpose:
The purpose of library routine Itranspose is to perform a matrix transpose of a two-dimensional

contiguous memory array in-place. The array may be of any fixed-size data type.
Process:

The Itranspose routine uses a permutation-by-cycle algorithm to perform an in-place matrix
transpose of an array of any fixed-size data type.

Reference: "Computational Frameworks for the Fast Fourier Transform", by Charles Van Loan,
(SIAM) 1992.
Interfaces and variable definitions:

Formal parameters for the Itranspose routine are given in the following table:

Argument Type Description
si integer size of each datum in bytes
nl integer * ptr to size of matrix in memory-fast dimension
n2 integer * ptr to size of matrix in memory-slow dimension
X kaddr ptr to contiguous array of data in memory

The matrix dimensions are supplied to Itranspose as pointers to permit the dimensions to be
updated to match the new matrix shape.
Other routines called:

Itranspose calls no other routines.

4.3.22 lsort

Purpose:
The library routine lsort sorts each row of a matrix of type double elements along the width

(memory-fast) dimension. Each item is sorted in ascending order. An optional result matrix can be
generated whose items are sorted in slave fashion to the first matrix. This feature can be used to
produce an aray of sorted indices that correspond to the change in order of the first matrix.
Process:

This routine uses a heap sort algorithm. A quicksort algorithm would be slightly faster in some
cases, but would require additional memory.
Interfaces and variable definitions:

Formal parameters for the lsort routine are given in the following table:

Argument Type Description
nw integer size of matrix in width (memory-fast) dimension
nh integer size of matrix in height (memory-slow) dimension
X double * ptr to input matrix x
y double * ptr to output matrix y
z double * ptr to optional output matrix z, or NULL

Other routines called:
Routine lsort calls no other routines.

5 Test Plan

Two types of tests will be performed on the kroutine software modules, validation test suites, and
acceptance tests.

48

5.1 Validation Test Suites

Validation test suites will be created for each kroutine using the Khoros non-interactive test suite
generation infrastructure, described in Chapter 7 of the Khoros Toolbox Programming Guide.

The purpose of these test suites is to provide a reproducible, non-interactive method of algorithm
verification that helps guarantee the integrity, robustness, and portability of the code. This is
particularly useful when the kroutines are recompiled on a new machine architecture.

A test shell script will be written for each kroutine based upon a test script template provided
with the Khoros software distribution.

Small data files will be generated within or loaded from these shell scripts to provide input file
stimuli for the tests. There will be no dependencies of these test scripts on other toolboxes except
for the FFT routine Ikfft which is required for certain calculations.

These shell scripts will be located in a testsuites subdirectory to be placed under the toolbox
directory.

5.2 Acceptance Tests

The following tests will be performed to demonstrate the functionality of the toolbox:
The Adjacent-Beam Post-Doppler Matlab script will be called from a Khoros workspace and

the results will be written to a file. The Matlab environment will be used to view the results for
acceptance test purposes.

The Adjacent-Beam Pre-Doppler Matlab script will be called from a Khoros workspace and
the results will be written to a file. The Matlab environment will be used to view the results for
acceptance test purposes.

A workspace will be run that executes the Adjacent-Beam Post-Doppler algorithm. The resultant
signal will be compared with the result generated by the Matlab version.

A similar workspace will be run that executes the Adjacent-Beam Pre-Doppler algorithm, if
completed. The resultant signal will be compared with the result generated by the Matlab version.

49

5. RLSTAP_HPC Integrations of Algorithms
Written in MATLAB

Steve Jackett
Albuquerque High Performance Computing Center (AHPCC)

30 September, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

50

Outline

Introduction

Porting Matlab scripts to Khoros executables

Calling Matlab scripts directly from Khoros

Application examples

Summary

Objectives

Provide access to Space-Time Adaptive Processing (STAP)
algorithms written in Matlab script from the Khoros graphical
programming environment Cantata and RLSTAP

- Investigate porting STAP algorithm Matlab scripts to C
language with Khoros wrapper, as compiled executables

- MHPCC focus is on automated conversion tools from
Matlab script to C or C++ (e.g. cross compilers)

- AHPCC focus is on hand conversion from Matlab scripts to
C for Khoros integration

- Develop an interface for calling STAP algorithm Matlab
scripts directly from Khoros without code conversion

- STAP algorithm Matlab scripts utilized as is, with possible
minor modification to top-level script interface

- inclusion as Khoros toolbox

 Matlab script code conversion: challenges

Matlab data representation differs substantially from that of Khoros
data representation
- Matlab accesses two-dimensional arrays in column-major order

whereas C language Khoros executables access such arrays in row-
major order (FORTRAN vs. C data ordering)

- Matlab stores complex data with all real values followed by all
imaginary values whereas Khoros executables store complex data with
real and imaginary values interleaved.

Code optimization strategies differ significantly between typical
programmers in the two domains
- Matlab: Much effort is expended employing high-level Matlab intrinsic

functions in clever ways to eliminate explicit looping constructs
- Khoros/C: Focus is more on using appropriate data types and pointer

schemes for efficient access of multi-dimensional arrays

51

Matlab script direct execution from Khoros: challenges

Matlab computational engine interface limited to one or two-
dimensional objects (version 4.2.c and earlier)
- RLSTAP data objects can have more than two dimensions

Matlab computational engine interface limited to four input and
four output matrix objects (determined by experimentation)
- RLSTAP data objects can have tens of attributes in addition to

value data
- Each attribute becomes a separate matrix in Matlab

Matlab data representation differs from that of Khoros
- Complex data pairs not interleaved
- Data ordering is column major
- All data is type double, including strings (version 4.2c)
- Matrices have names (limited to 19 characters)

Matlab computationl engine has minimal error reporting

Outline

Introduction

Porting Matlab scripts to Khoros executables

Calling Matlab scripts directly from Khoros

Application examples

Summary

Porting Matlab scripts to C (Khoros) executables:
Hand conversion

Determine code hierarchy, dependencies, and formal parameters
of each Matlab script routine

Identify Matlab scripts that represent functions already
implemented by existing Khoros toolboxes

Determine Khoros software object type each Matlab routine
should become (library routine, kroutine, xvroutine, etc).

Convert one routine at a time to C language - lowest levels first

Place a Matlab C extension (cmex) wrapper around converted
and compiled routine

Substitute Khoros wrapper for Matlab cmex wrapper

Test and debug

52

Porting Matlab scripts to Khoros executables: Example

C language translation of Matlab script [y,w] = redopp(x,v)

«include <stdio.h >

int redopp(
unsigned int wx, /* 'fast' dimension of matrix x */
unsigned int hx, /* 'slow' dimension of matrix x */
double *x, /* input matrix x */
unsignd int nv, /* length of optional input vector v */
double *v, /* input vector v, or NULL */
unsigned int r, 1* replication factor r */
double *y, /* output matrix y */
double *w) /* optional output vector w, or NULL

*/
{

}

Matlab function
arguments mapped

to formal parameters
inC

Porting Matlab scripts to Khoros executables: Example

«include <mex.h>

«define X_IN phrs[0]
«define VJN prhs[l]
»define Y_OUT plhs[0]
«define W_OUTplhs[l]

void mexFunction(
int nlhs,
Matrix *plhs[],
int nrhs.
Matrix *prhs[])

{
x = mxgetPr(X_rN);
w = mxCreateFuII(nv, 1, REAL);

/* C-language 'redopp' routine */
(void)redopp(mx, nx, x, nv, v, 5, y, w);]

typical Matlab cmex
wrapper for C routine

Porting Matlab scripts to Khoros executables: Example

Khoros wrapper for C 'redopp' routine

* Khoros: Id

«include "internals.h"

int redopp(
unsigned int wx, unsigned int hx,
double *x,
unsigned int nv, double *v,
unsigned int r, double *y, double *w)

(

)

Khoros wrapper for low-
level C routine can be as
simple as adding a header

Khoros data services calls occur at higher-level software layer

53

Matlab algorithm scripts re-coded to C

• Matlab instrinsics (w/ no corresponding C library support)

- sort*, interp, transpose, filter, hsv2rgb

• Utilities implemented in place of intrinsics

- hsv_to_rgb, hsort, hsort2, isort, isort2

• Low-level STAP scripts

- hsv, vibgyor, vibgyor2, zeropad, zeropadm

• Mid-level STAP scripts

- redopp, rearrange_plp, getslice, cfarnormGO

• The Matlab intrinsic sort function has more options than standard C library
routine including the ability to condition the sorting of one vector on another.

Hand conversion of Matlab to C: level of effort

Conversion of one line of Matlab script takes roughly 1-2 hours,
assuming
- programmer is proficient in Matlab and C-language

- defensive programming strategies are utilized

- some knowledge of signal processing algorithms

Time required can vary tenfold depending on the experience &
proficiency of the programmers involved

Major issues
- data ordering complexities, especially 3-D objects

- understanding intent of 'clever'Matlab code

- software strategies that lead to debugging pitfalls

Matlab script conversion: lessons learned

The hand conversion process from Matlab script is

- laborious

- error prone
- very time consuming

However, once a working compilable source is available,
migration to Khoros libraries and kroutines is relatively simple

A seamless test environment is vital
- Use of a C-extension (cmex) wrapper allows routines to be

individually tested against their Matlab counterparts.

Matlab scripts that convert to library routines require little or no
modification for incorporation into Khoros since Khoros-
dependent aspects can be relegated to higher software layers.

54

Outline

Introduction

Porting Matlab scripts to Khoros executables

Calling Matlab scripts directly from Khoros

Application examples

Summary

Calling Matlab scripts directly from Khoros

Software agent is the Matlab Engine Library (C language) which
includes routines such as

- engOpen: starts up the Matlab computational engine

- engClose: shuts down the Matlab computational engine

- engPutMatrix: sends a matrix to the Matlab engine from
local process memory

- engGetMatrix: gets a matrix from the Matlab engine to local
process memory

The Matlab computational engine executes as a separate process
in the background without a user interface

The Matlab Engine Library communicates with the Matlab
computational engine on Unix machines using pipes.

 Matlab Engine Library interface to Khoros

The Matlab Engine Library is simple to use with Khoros software
objects once the proper toolbox dependencies have been established

- Additions similar to the following must be made to the
'toolbox.def file in the user's toolbox repository

• TOOLBOXINCLUDE -K= -I/usr/local/matlab/extern/include
• TOOLBOX_LIBDIR -K= -L/usr/local/matlab/extern/lib/ibmrs
• SYS_LIBRARIES +<= -libmrs

The Matlab Engine Library can then be compiled and linked in the
usual Khoros manner

55

Khoros software tools for executing Matlab scripts
Generic Matlab_exec glyph that inputs up to four data objects,
sends them to the Matlab engine, executes one or more Matlab
scripts and returns up to four data objects
- One matrix is extracted from each input object (value segment)
- One matrix result is written to each output object
- No attributes are propagated from input to output beyond those

associated with the value segment
Specialized Matlab_stap glyph that invokes STAP algorithms
- Inputs single Khoros data object
- Sends data cube in value segment as matrix
- Sends all rlstap2 attributes as separate matrices
- Returns data cube and updated attributes to Khoros object

Pane objects that invoke Matlab_stap glyph for specific algorithms
- mxPreDopStap invokes pre-doppler STAP script
- mxPostDopStap invokes post-doppler STAP script

Outline

Introduction

Porting Matlab scripts to Khoros executables

Calling Matlab scripts directly from Khoros

Application examples

Summary

Matlabexec application: Frequency domain convolution

56

Matlab_stap application: RLSTAP pulse compress example

-^t CanUta: Visual Programming Language for the KHOROS System I ■>

fflHBBä MMMMMME

• <*«.> HOTMflrt «Wot • r?* Vr?" •:.<?<• - •■••■■ ■•■...

In this example, the
Matlab_stap glyph
invokes a Maüab pulse
compression script

Pulse compression is
also invoked using a
native RLSTAP glyph

The two results are
passed to display glyphs
for comparison

Summary

Hand conversion of code from Matlab to Khoros executable is a
difficult, error prone, and time consuming process

Conversion can be performed at a rate of one Matlab script line every 1
or 2 hours, at best

Testing of individual converted routines is facilitated by using Matlab
C extension wrappers

The Matlab Engine facilities can be utilized to interface Matlab and
Khoros programs in fairly general ways

High-level software tools have been written and demonstrated that
invoke algorithm functions written in Matlab script from Khoros,
including STAP related algorithms

57

6. Critical Design Review For
Advanced Signal Processing,

Integration of Parallelism, and RLSTAP

Marc Friedman
Maui High Performance Computing Center

Joe Fogler
Paul Alsing

Ruth Klundt
Ken Summers

Albuquerque High Performance Computing Center (AHPCC)

30 April, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB...

58

1 Introduction

The Advanced Signal Processing (ASP) program is a DARPA sponsored activity for studying
advanced processing techniques and technologies for next generation air early warning (AEW)
platforms.1 A key technology area for this activity is software tools and methodologies for col-
laborative algorithm development.

Khoral Research Incorporated (KRI), a spinoff company from the University of New Mexico Elec-
trical and Computer Engineering Department, has created a software integration and development
environment for information processing, data exploration and visualization called Khoros.2 Khoros
is a comprehensive software system with a rich set of tools usable by both end-users and application
developers. Included in these tools is a graphical programming application called Cantata which gives
users the ability to construct complex algorithms by interconnecting iconic representations, called
glyphs, of processing functions in a terminal window called a workspace, using mouse point-and-click
operations. Khoros has become a de-facto standard for collaborative algorithm development in the
Department of Defense automatic target recognition (ATR) community.

The Rome Laboratory Space-Time Adaptive Processing (RLSTAP) tool, utilizing Khoros and its
graphical programming environment Cantata, represents a state-of-the-art development environment
for clutter modeling and radar simulation for advanced early warning (AEW) applications, and has
found use by researchers working on Navy E-2C and the Air Force E-3A upgrades. Written initially
in Khoros version 1.0, RLSTAP is currenly being ported to the latest Khoros release, version 2.1, in
a separate development.

Signal processing algorithms required by AEW applications are computationally intensive and
utilize large data sets for experimentation and validation. These are driving a need for distributed
parallel processing resources such as those available at the Maui High Performance Computing
Center (MHPCC).

Khoral Research Inc. has begun the development of an advanced version of Khoros that will
directly support parallel algorithm development and experimentation within the Cantata graphical
programming environment. This development will involve substantial modification to the infras-
tructure of Khoros and will take a few years to complete.

The purpose of the effort described in this document is to provide an interim capability for parallel
algorithm development utilizing a new set of software tools that will work within the existing Khoros
2.1 environment. These tools will provide a standard and easy-to-use mechanism for incorporating
parallel algorithms into the RLSTAP environment.

2 Scope

2.1 System Overview

Software tools will be developed under this task for the purpose of facilitating the incorporation of
parallel algorithms in the RLSTAP environment under Khoros 2.1. The target computing environ-
ment will be the IBM Parallel Operating Environment (POE) on the IBM SP (RS/6000) architecture
running under the ATX operating system. Interprocess communication will be performed utilizing
the Message Passing Interface (MPI).

1G. W. Titi, An Overview of the ARPA/NAVY Mountaintop Program, Proceedings IEEE Adaptive Antenna
• Systems Symposium, (1994).

aSee KRI's website at http://vmw.khoral.com/ for more details.

59

2.1.1 Motet

The software tools will be based on a paradigm for integrating MPI-based parallel library routines
into the Khoros environment called Motet. 3 However, some extensions will be made to the Motet
architecture to increase its usability in the RLSTAP environment. The enhanced version of Motet
to be implemented under this task, will be designated RLSTAP-HPC .

Motet acts as a batch parallel job processor, utilizing a collection of interconnected Khoros
glyphs, called a Motet composition, to construct a shell script containing command lines for paral-
lel job submission and execution. A Motet composition is always bracketed by two special glyphs
called Motet-Start and Motet-Submit. Motet-Start establishes the beginning of a Motet composi-
tion and Motet-Submit delineates the end of a Motet composition. Glyphs that He between the
Motet-Start and Motet-Submit represent the parallel calculations to be performed. An example
Cantata workspace containing a Motet composition with three calculation kRoutine is shown in
Figure 1. This workspace also contains glyphs for converting data between Khoros Data For-
mat (KDF) and Motet file format. These conversion functions are typically performed by the the
Motet-Start and Motet-Submit glyphs, but are shown explicitly in the figure for clarity.

Figure 1. Example workspace containing a Motet composition.

There are three primary components to Motet kRoutines, pkRoutines, and IpkRoutines.
kRoutines execute serially on the local machine from within Cantata. These include the manda-

tory control kRoutines Motet-Start and Motet-Submit, as well as various calculation kRoutines that
cause the remote execution of parallel algorithm functions.

pkRoutines execute remotely in response to instructions generated by calculation kRoutines in
the Motet composition. pkRoutines perform parallel data distribution operations for data prepara-
tion and call library routines that perform the actual algorithm computations. pkRoutines utilize
Motet facilities but have no Khoros code.

3 M0tet was developed by Karen G. Haines at the University of New Mexico Albuquerque Resource Center under
the direction of Dr. Thomas P. Caudell.

60

lpkRoutines are MPI-based library routines that perform algorithm functions. They contain
no Motet or Khoros code.

The sequence of events that occur in the execution of a Motet composition in the IBM POE
Load Leveler environment is as follows. First Cantata executes the Motet-Start glyph on the local
machine. Then MoteLStart reads its command line arguments (i.e. the state of its pane window),
converts its input file from KDF format to Motet format, and initiates the construction of a load
leveler shell script. MoteLStart then exits and Cantata executes the next kRoutine in the chain, a
calculation kRoutine.

The calculation kRoutine adds a line to the load-leveler shell script for executing an algorithm
function. In addition, the calculation kRoutine may perform a one-time KDF to Motet file conversion
on any secondary inputs that it might obtain from serial glyphs in the Cantata workspace. Cantata
then executes the remaining calculation kRoutines in the composition in proper sequence, with each
kRoutine adding a line to the load-leveler script for execution of an algorithm function.

Finally, Cantata executes the MoteLSubmit kRoutine which adds a line to the load-leveler shell
script to gather results from the nodes, and closes the script. MoteLSubmit then submits the
shell script to load-leveler for execution and waits for completion. As the shell script executes,
each parallel executable pkRoutine in the script is invoked which in turn reads its command line
arguments to obtain filenames and parameters, performs any necessary data distributions, calls its
associated Ipkroutine to perform an algorithm calculation, and writes the results to an output file
before exiting.

Once the shell script has fully executed and the job completes, Motet-Submit converts any result
data from Motet format to KDF format on the local machine and passes the data to the next glyph
in the local Cantata workspace where serial execution resumes.

2.1.2 RLSTAP_HPC

The RLSTAP_HPC system will follow the basic structure of Motet with the following changes and
additions.

In RLSTAPJIPC , the Khoros KDF file format will be used directly, eliminating the need for
file format conversions. The Khoros parallel data services library will be employed for file I/O and
data distribution.

RLSTAPJIPC will also provide a level of abstraction of the parallel operating environment
from the calculation kRoutines. These kRoutines will be implemented as Khoros pane objects that
call a common launch script. The launch script will abstract the operating environment from the
kRoutines.

The ParJStart and ParJSubmit (which correspond to Motet .Start and Motet .Submit in Motet)
kRoutines will be implemented as kroutine objects. In order to support multiple input and out-
put data files, ParJStart and ParJSubmit will be modified in the RLSTAPJ3PC implementation,
to support multiple input and output glyph connections with matching underlying communication
fabric to the parallel world. By routing all connections between serially executing glyphs and RL-
STAP .BPC kRoutines via the ParJStart and ParJSubmit glyphs, synchronization of time-varying
data exchanged between the serial and parallel worlds can be ensured.

A workspace utilizing the proposed extensions to Motet (RLSTAP_HPC) is shown in Figure
2. In the example, ParJStart and ParJSubmit are capable of establishing up to four simultaneous
connections between the surrounding serially executing glyphs and the RLSTAP-HPC composition,
although only two input and two output connections are utilized.

61

rHI- - ,-..
1 fr 1 I » * -Ss fr 1 ^mf^ ^^™,^»LJi. s j

mi.

Hit
ü sssssssä ^^^^^ÄÜi ^^M

^^^^^»CispJsiiy artige |

m

&&Aysssss/sztfssAr////M^^

Figure 2. Example workspace using proposed extensions to Motet (RLSTAP_HPC).

In the RLSTAP J3PC architecture, the user will have the option of executing the composition
multiple times from the same parallel job. This will be accomplished by constructing a loop in the
load-leveler shell script that repeatedly executes the parallel routines in sequence each time new
input data becomes available from the preceeding serial glyphs. The ParJStart and Par-Submit
glyphs will utilize a continuous run mechanism available under Khoros 2.1 when operated in this
mode.

2.1.3 Data Distribution

RLSTAPJIPG will provide facilities for the distribution of data between parallel executables. Data
distribution is performed via a library call at the beginning of each pkRoutine. The user simply
specifies the desired data distribution required by the associated IpkRoutine algorithm function, and
upon return from the library call, receives a KDF object containing the distributed portion of the
data for the current node. The IpkRoutine can then be called to perform the algorithm function on
the data in memory.

After the algorithm function is performed, a final library call is made to write the data to an
output file. By default, the data distribution type of the output file is specified to be that which
resulted from the algorithm function.

Algorithm functions are commonly implemented using scientific libraries such as PESSL and
Scalapack. These libraries may perform MPI-based data redistributions in the course of algorithm
calculations (within the same pkRoutine) of which RLSTAP_HPC will be unaware. RLSTAP-HPC
need only be informed of the distribution type of the final results in order to write them correctly
to KDF files before the pkRoutine exits.

62

Algorithm functions could conceivably utilize the RLSTAP-HPC data distribution operations
for redistributing data in the course of algorithm calculations within the same pkroutine. However,
RLSTAP JHPC data distribution adds an extra (unnecessary) layer when called from inside the
MPI program. Data distribution of memory-based data could therefore be performed with greater
efficiency using strictly MPI-based operations such as those found in the scientific libraries.

RLSTAPJIPC will support the data distribution types shown in the following table:

Dimensionality Distribution Type Comments

1-D distribute^) broadcast 1-D
1-D distribute(block) vector into sub vectors
2-D distribute(*,*) broadcast 2-D
2-D distribute(block,*) distribute along first dimension
2-D distribute(*,block) distribute along second dimension
3-D distribute(*,*,*) broadcast 3-D
3-D distribute(block,*,*) distribute along first dimension
3-D distribute(*,block,*) distribute along second dimension
3-D distribute(*,*,block) distribute along third dimension
4-D distribute(*,*,*,*) broadcast 4-D
4-D distribute(block,*,*,*) distribute along first dimension
4-D distribute(*,block,*,*) distribute along second dimension
4-D distribute(*,*,block,*) distribute along third dimension
4-D distribute(*,*,*,block) distribute along fourth dimension
5-D distribute(*,*,*,*,*) broadcast 5-D
5-D distribute(block,*,*,*,*) distribute along first dimension
5-D distribute(*,block,*,*,*) distribute along second dimension
5-D distribute(*,*,block,*,*) distribute along third dimension
5-D distribute(*,*,*,block,*) distribute along fourth dimension
5-D distribute(*,*,*,*,block) distribute along fifth dimension

2.2 Limitations

The primary purpose of this task is to provide a set of software tools to facilitate the incorporation of
parallel versions of RLSTAP algorithms into Khoros. In addition, example workspaces and routines
will be provided that demonstrate the use of these software tools on a limited set of algorithm
functions. However, these functions will not represent complete RLSTAP algorithms.

A two-dimensional parallel FFT algorithm implementation and three STAP-related algorithm
functions will be addressed - InvCovar, STAPwgts, and Covar. Due to tight schedule contraints,
only the FFT algorithm and one of the other three functionalities may be implementable within the
alotted time. However, a best effort will be made to implement them all.

RLSTAP-HPC represents an interim solution for incorporating parallel algorithms into the
RLSTAP environment. It will provide an easy-to-use mechanism that will function within Khoros 2.1
without any modifications to the Khoros infrastructure. However, it cannot be expected to have the
level of functionality achievable by adding distributed parallel computing facilities directly into the
Khoros infrastructure. Thus, it is expected that users will eventually migrate their RLSTAP-HPC
compositions to KRI's own implementation of parallel distributed computing in Khoros when it
becomes available.

RLSTAP-HPC will be implemented to work in the IBM Parallel Operating Environment (POE)
using Load Leveler on the IBM SP (RS/6000) architecture running under the ADC operating system.
Although RLSTAP-HPC will contain abstractions to facilitate the porting of parallel codes to other
architectures, the actual port to other environments will not be performed.

RLSTAPJ1PC will be capable of gathering and scattering KDF format files from the Cantata
workspace. Although Khoros parallel data services is capable of distributing different types of

63

segments within KDF files (e.g. geometry, mask, and value), only data distribution utilizing the
value segment and user-defined attributes will be demonstrated under this task. Use of the value
segment will impose the requirement for distributed data of a single data type of regular shape in
up to five dimensions in any given file. The user-defined attributes may be of any type and number,
but will be distributed globally and gathered from the root node as defined within the capabilities
of Khoros parallel data services.

RLSTAP-HPC will support a variety of block-type distributions on data in up to five dimensions.
However, not every type of block distribution possible on five dimensional data will be implemented.
The distributions to be supported in the development were selected based on the anticipated needs
of STAP algorithms in the ASP project.

3 Reference Documents

The proposed RLSTAP-HPC architecture is based on the original Motet paradigm for integrating
MPI parallel library routines into Khoros. An overview of the Motet architecture can be found in
the document Motet: A Paradigm for Integrating MPI Parallel Library Routines Into Khoros, K.
G. Haines and P. Alsing, University of New Mexico, Albuquerque, New Mexico.

Software routines to be written for use in Khoros will be developed using case tools built into
Khoros. These include craftsman which is used for the creation and management of collections of
routines called toolboxes, composer which is used to edit, manipulate, and compile existing software
objects (e.g. kroutines), and guise which is used to edit graphical user interface (GUI) objects (e.g.
panes and forms). These case tools are described in Chapters 2, 3, and 4, respectively, in the Khoros
2.1 Toolbox Programming Guide.

Data distribution will be implemented using a pre-release of Khoros paraserv (parallel data
services). See Khoros documentation on paraserv for more information.

Documentation of the data compression tools will be provided in three forms - man pages, on-line
help, and a printed manual.

Man pages will serve as on-line documentation for both users and programmers, describing
functionality and usage of the various programs and utilities. Khoros man pages are accessable to
the user via the kman command which is similar in operation to the standard Unix man command.

On-line help is accessible by the user via a Help button on the graphical user interface pane that
can be displayed from within the Cantata graphical programming environment. The information
provided through the Help button is similar to that obtainable from man pages.

The printed manual will provide a hardcopy representation of the documentation and encap-
sulate much of the documentation into an integrated whole. The tools to support printed manual
documentation are embedded within the Khoros imake system, which provides several macros for
including man pages, code segments, and function descriptions.

A description of documentation facilities within Khoros is provided in Chapter 6 of the Khoros 2.1
Toolbox Programming Manual. Examples of documentation generated using these built-in facilities
can be found throughout that manual.

4 Design

4.1 Software Development Plan

Software development will involve the following steps. They are largely chronological in order, al-
though there may be some overlap, particularly in the development of the data distribution routines.

1. Create installation instructions for KRI parallel distribution services message and paraserv
toolboxes along with a simple example using the RLSTAP_HPC paradigm. ".

64

2. Add parallel operating environment abstractions to ParJStart and ParJSubmit by introducing
calls to separate command scripts.

3. Add support for up to four input and output connections between ParJStart and ParJSubmit
and surrounding serial glyphs in support of single-pass execution of static input data.

4. Develop calculation kRoutine template(s) containing parallel operating environment abstrac-
tions and support for multiple input and output connections.

5. Construct an example workspace that includes a parallel FFT routine which utilizes a parallel
scientific library such as PESSL.

6. Develop pkroutine template(s) for a subset of input and output connection combinations.

7. Construct a Joint Domain Optimum workspace containing parallelized Inverse Covariance,
STAP weights, and Covariance kRoutines.

8. Add inter-process communication (IPC) features to ParJStart, ParJSubmit, and their associ-
ated command scripts to synchronize multiple input and output connections.

9. Add continuous run features to ParJStart, ParJSubmit, and their associated command scripts
to support multi-pass execution on single batch jobs.

10. Generate man pages, on-line help, and printed manual documentation.

4.2 Data Description

Data will be in standard Khoros KDF format. After data distribution the distributed KDF objects
will also contain a new polymorphic attribute which controls the data distribution. It is defined as
follows:

KPDSJOISTRIBUTION

Dimension This argument describes which dimension of the polymorphic value segment will be dis-
tributed over the different processors. Only one dimension can be distributed. The distribution
along this dimension will occur as dictated by the type argument.

Type This argument describes how the data will be distributed over the different processors.

Communication group This argument specifies the communication group over which the data is
distributed.

4.3 Modules

The software modules in RLSTAP-HPC consist of the control kRoutines ParJStart and ParJSubmit,
calculation kRoutine templates, and pkroutine templates, and routines for automated data distri-
bution.

4.3.1 ParJStart

Purpose:
The purpose of ParJStart is to initialize an RLSTAPJ3PC series of parallel computations. All

Cantata input connections from serially executed glyphs to a parallel lineup are routed to the inputs
of ParJStart.
Process:

65

Par JStart reads its command line arguments, and creates the initialization and definition portion
of a Load-Leveler shell script file in accordance with those arguments. It also creates a local database
file and places information about its input and output connections in that file. This information
is utilized by subsequent glyphs in the parallel lineup to generate filenames for proper connectivity
among their pkRoutine parallel executable counterparts.

66

Interfaces:
The ParJStart routine utilizes the command line user interface (CLUI) facilities built into Khoros.

These facilities provide automatic code generation of usage reporting, and support the input of
command line via a graphical interface in Cantata graphical programming environment. Details
of these automated facilities and capabilities are provided in the Khoros S.l Toolbox Programming
Guide.

Command line arguments specific to the ParJStart routine are as follows:

Argument Type Description
-inData infile Input file 1 from previous glyph
-inData2 infile Input file 2 from previous glyph
-inData3 infile Input file 3 from previous glyph
-inData4 infile Input file 4 from previous glyph
-outData outfile Output file 1
-outData2 outfile Output file 2
-outData3 outfile Output file 3
-outData4 outfile Output file 4
-initialDir string initial directory (e.g. SHOME)
-jobName string parallel job name (e.g. pk-jobl)
-nNodes integer number of Parallel nodes (e.g. 4)
-execMode list 1 = "single-pass", 2 = "continuous"
-class list 1 = "short", 2 = "mixed",

3 = "long",4 = "bigmem",
5 = "large", 6 = "medium",
7 = "smallJong", 8 = "smalLshort"

-notifyTJser string user e-mail address: SUSER
-notification list 1 = "always", 2 = "complete",

3 = "error", 4 = "never", 5 = "start"

Variable definitions:
The Par-Start routine utilizes the variables inDataFileName, inDataFileName2, inDataFile-

NameS, and inDataFileName4 to store the input filenames for input data connections, and the vari-
ables outDataFUeName, outDataFileName2, outDataFileNameS, and outDataFileName4 to store
the output filenames for output data connections.

Two other files are required for operation of ParJStart. A database file is used to retain data
connection filenames and parallel operating environment information required by subsequent calcu-
lation glyphs as well as ParJSubmit. The Khoros kdbm database routines are used to create and
access this file. The filename for this database file is constructed from the user-specified jobName
as [jobNameJ.dbm, and is stored in the variable dbmFileName. A struct of type kdbm and given
the name dbm is returned from a call to the Khoros kdbm-open routine and used to reference the
database file in subsequent database calls from within ParJSubmit. Two struct variables are used to
store information in the database file, key and val of type kdatum.

Additional information stored in the database includes the number of processor nodes nNodes,
and a scalar called currentProcessNum which is initialized to the value 1 and is incremented by each
calculation kRoutine in the parallel lineup . The currentProcessNum value is checked by Par-Submit
to ensure that at least one calculation kRoutine exists in the composition. Another parameter
stored in the database is execMode which is used to inform ParJSubmit whether the parallel job is to
execute continuously in a loop, or just once. If continous operation is requested, ParJStart creates
an until-do loop in the shell script. This loop is completed by ParJSubmit by placing a done line at
the end of the same script.

The second file required for operation of ParJStart is a shell script used to construct the sequence
of commands for parallel execution by the parallel lineup . This file is created by ParJStart and

67

given the filename fjobName].sh, which is stored in the variable shellFileName.
Since the jobName is used in the construction of the database and shell script filenames, it must

be made available to subsequent kRoutines in the parallel lineup who need access to these files.
Thus, jobName and its associated directory name, are written to each of the output connections
(e.g. outData, outData2) of the Par_Start glyph.

4.3.2 ParJSubmit

Purpose:
The purpose of ParJSubmit is to initiate remote parallel execution of a parallel lineup . It also

gathers results from the parallel computations and makes them available to glyphs that follow in
the workspace.
Process:

ParJSubmit accesses the Load-Leveler shell script file and database file created by ParJStart
by constructing their filenames using the jobName and directory path information received via its
Cantata input connection inData.

ParJSubmit completes the Load-Leveler shell script that was created by ParJStart and appended
by intervening calculation kRoutines, and submits the script for parallel execution. Par-Submit then
waits for the parallel job to complete. If the execMode, stored in the database by ParJStart, is set
for single-pass operation, ParJSubmit executes the script, waits for the job to complete, gathers the
results, and then exits. If the execMode is set for continous opereration, Par_Submit appends a done
line to complete the shell script loop initiated by ParJStart, submits the script for execution, and
then repeatedly gathers results from the parallel calculations and makes them available to following
glyphs in the workspace until the parallel job is terminated by ParJStart. This mode of operation is
similar to Cantata's continuous run feature, for local execution of serial glyphs.
Interfaces:

The ParJSubmit routine utilizes the command line user interface (CLUI) facilities built into
Khoros. These facilities provide automatic code generation of usage reporting, and support the input
of command line via a graphical interface in Cantata graphical programming environment. Details
of these automated facilities and capabilities are provided in the Khoros 2.1 Toolbox Programming
Guide.

Command line arguments specific to the ParJSubmit routine are as follows:

Argument Type Description
-inData infile Input file 1 from previous glyph
-inData2 infile Input file 2 from previous glyph
-inData3 infile Input file 3 from previous glyph
-inData4 infile Input file 4 from previous glyph
-outData outfile Output file 1
-outData2 outfile Output file 2
-outData3 outfile Output file 3
-outData4 outfile Output file 4

Variable definitions:
The ParJSubmit routine utilizes the variables inDataFileName, inDataFileName2, inDataFile-

NameS, and inDataFileName4 to store the input filenames for input data connections, and the vari-
ables outDataFileName, outDataFileName.2, outDataFikNameS, and outDataFileName^ to store
the output filenames for output data connections.

Two other files are required for operation of ParJSubmit. A database file is used to retain
data connection filenames and parallel operating environment, information required by preceeding
calculation glyphs as well as ParJStart. The Khoros kdbm database routines are used to access
this file. The filename for this database file is constructed from the user-specified jobName as

68

[jobNameJ.dbm, and is stored in the variable dbmFileName. A struct of type kdbm and given the
name dbm is returned from a call to the Khoros kdbm^open routine and used to reference the database
file in subsequent database calls from within ParSubmit. Two struct variables are used to store
information in the database file, key and val of type kdatum.

Additional information available from the database includes the number of processor nodes nN-
odes, and a scalar called currentProcessNum which is initialized to the value 1 by Par_Start, and is
incremented by each calculation kRoutine in the parallel lineup . If the currentProcessNum value
is equal to 1 when examined by ParJSubmit, an error is reported indicating that there were no
calculation kRoutines present in the Motet composition.

The second file required for operation of Par-Submit is a shell script used to form the sequence of
commands for parallel execution by the parallel lineup . This file is created by Par.Start and given
the filename [jobNameJ.sh, which is stored in the variable shellFileName.

4.3.3 kRoutine Templates

Purpose:
The purpose of kRoutine Templates is to provide the user examples of how to construct calcu-

lation kRoutines for their applications. Three kRoutine Templates will be created for the following
I/O topologies:

Template I/O Connections xempia.be i/vj ^onueciions
kRoutinell One input and one output
kRoutine21 Two inputs and one output
kRoutine22 Two inputs and two outputs

These templates will be in the form of Khoros kroutines and/or pane objects that can be copied
from the RLSTAPJHPC toolbox to the user's toolbox using the Khoros case tool Craftsman. The
user need only add the the name of their parallel executable pkroutine and additional command line
options via the Khoros case tool Guise.
Process:

A kRoutine Template (or any other kRoutine) obtains the jobName from its first input connec-
tion, and constructs filenames for the database and shell script created by Par_Start. It then accesses
the database to obtain the output filenames of preceeding kRoutines that it will use as inputs in the
parallel environment. It also constructs its own output filenames of the form jobName.kRov.tine.out
and places them in the database for use by subsequent kRoutines in the parallel lineup . Finally, it
appends a parallel executable command line to the shell script that includes its parallel executable
name (e.g. pkfft), input and output filenames, and command line options.
Interfaces:

The kRoutine Templates utilizes the command line user interface (CLUI) facilities built into
Khorosand detailed in the Khoros 2.1 Toolbox Programming Guide.

Command line arguments for the kRoutine22 template are as follows:

Argument Type Description
-il . infile Input file 1
-i2 infile Input file 2
-ol outfile Output file 1
-o2 outfile Output file 2
-r string Parallel executable name [default: pNoop]

The command line arguments for kRoutinell and kRoutine21 are similar except for the number
of input and output file arguments.
Variable definitions:

69

The kRoutine Template routines utilize the variables inDataFilel, inDataFile£, and so on, to
store the input file names. The variables outDataFilel, outDatafile£, and so on, are used to store
the output file names.

The parallel executable name associated with the kRoutine is stored in the variable pExecName.
Additional variables may be added by the user to store command line options specific to the

algorithm function of the kRoutine.
Routines called from kRoutine Templates

The parallel executable name specified by the -r command line option is caused to execute when
the shell script is eventually submitted by Par_Submit, although it is not directly called by the
kRoutine.

In RLSTAP-HPC , the possibility of making kRoutines Khoros pane objects that call a single
launch routine will be investigated. However, some additional experimentation will be required to
determine whether this is feasible. The impact of making kRoutines pane objects will be to reduce
the memory requirments of kRoutines by eliminating the need for multiple kroutines.

4.3.4 pkRoutine Templates

Purpose:
The purpose of pkRoutine Templates is to provide the user examples of how to construct parallel

executable driver routines for their applications. Three pkRoutine Templates will be created for the
following I/O topologies:

xempiate i/u connections
pkRoutinell One input and one output
pkRoutine21 Two inputs and one output
pkroutine22 Two inputs and two outputs

These templates will be in the form of pkroutines that can be copied from the RLSTAP_HPC
toolbox to the user's toolbox. The user need only define the type of desired data distribution
required on input to their associated IpKroutine at the top of the template, and insert the name of
their executable IpKroutine in the middle of the template.
Process:

pKroutines are driver programs that utilize library calls to perform data distribution and read
on input, call associated IpKroutines that perform the actual algorithm computations on data in
local memory, and then write the calculation results from memory to output files again using the
library.

The pKroutines can also obtain algorithm parameters and options via command line arguments
which are scanned and passed along with the data buffers and data size information to the IpKrou-
tines.
Interfaces:

The pKroutine Templates utilize a simple command line user interface to obtain input and output
filenames as well as algorithm options and parameters required by their associated IpKroutines.

Command line arguments used by the pkRoutine22 template are as follows:

Argument Type Description
-il infile Input file 1
-i2 infile Input file 2
-ol outfile Output file 1
-o2 outfile Output file 2

The input and output files utilized by the pkRoutines are read and written from disks local to
the individual processor nodes. Thus, each pkRoutine executed on each node accesses its own data
using the same filenames as its conterparts on other nodes.

70

Variable definitions:
The pkRoutine Template routines utilize the variables inDataFilel, inDataFile2, and so on, to

store the input file names. The variables outDataFilel, outDatafile2, and so on, are used to store
the output file names.

Additional variables may be added by the user to store command line options specific to the
algorithm function of the lpKroutine.
Routines called from pkRoutine Templates

pkRoutine Templates (and pkRoutines in general) call algorithm library routines called IpkRou-
tines. These library routines perform the actual algorithm functions on data in local memory. They
typically utilize parallel scientific libraries such as PESSL.

Library routines utilized by pkRoutines to distribute, read and write data, are described in the
following subsections.

4.3.5 lPar_distribute

Purpose:
The purpose of War-distribute is to obtain data from an input file with a user-defined data

distribution. If the input file is not already distributed, or has a different data distribution than
that requested by the user, the data is re-distributed accordingly before it is presented to the caller.
Process:

This routine utilizes a number of lower-level library routines to read the data file headers and
data, and to perform any needed redistributions. One call to War-distribute must be made for each
input data file to the calling IkRoutine.
Interfaces and variable definitions:

Formal parameters for the War-distribute routine are given in the following table:

Argument Type Description
ndim integer number of dimensions in data
distType integer data distribution type
fname char * filename of object to be distribued
dataPtr void * pointer to distributed data

4.3.6 lPar_writeData

Purpose:
The purpose of WarjwriteData is to write intermediate output data to a file on the nodes (usually

at the end of a pkroutine). This file will be the input data for the next pkroutine in the parallel
lineup.
Process:

This routine utilizes lower level library routines to write the distribute data to a file. The same
name will be used for each distributed portion of the data on each node.
Interfaces and variable definitions:

Formal parameters for the WarjwriteData routine are given in the following table:

Argument Type Description
fname
dataPtr

char *
void *

filename of object to be written
pointer to distributed data

4.3.7 lPar-gatherFile

Purpose:
The routine War.gatherFile gathers a distributed file and writes it to a single file.

71

Process:
The routine War „gather File checks the distribution type of the distributed data and calls the

appropriate lower level library routines to gather the data. The gathered data is written to a file.
Interfaces and variable definitions:

Formal parameters for the War „gather File routine are given in the following table:

Argument Type Description
dataPtr void * distributed data
rank integer processor rank
nNodes integer size of comm group
filename char * output KDF filE

5 Test Plan

Two types of tests will be performed on the kroutine software modules, validation test suites and
acceptance tests.

5.1 Validation Test Suites

Validation test suites are a set of test routines that follow the design methodology of the Khoros 2.1
test suite facilites (see Chapter 7 of the Khoros Toolbox Programming Guide). These are deliverables
and will be provided with any routine written for Khoros. Their purpose, as outlined in the Khoros
documentation, is to help ensure that when a khoros toolbox is compiled on a new architecture, it is
functioning properly. Khoros-type test suites follow a certain style. First, they are non-interactive.
This permits test suites to be run on entire Khoros installations with results catalogued to log file(s).
Second, they utilize small amounts of data, often generated on-the-fly. This keeps the installation
from bloating to unrealistic proportions, and also allows each routine to execute in a small amount of
time. Thus, Khoros style test suites are not meant to do exhaustive testing, just simple verification.
A test shell script will be written for each kroutine in RLSTAP_HPC .

5.2 Acceptance Tests
The RLSTAP JEPC toolbox will be demonstrated by implementing three specific algorithm functions
from RLSTAP in parallel and demonstrating their operation in a Khoros workspace. The results of
the parallel implementation of the algorithm functions will be compared to the results of the serial
implementation.

Acceptance tests are a one-time event in which it is shown by example that a pre-chosen algorithm
piece selected within RLSTAP has been successfully parallelized and it produces correct results. The
deliverable part of the acceptance test is a Cantata Workspace that runs the acceptance test example.

In this case a workspace that includes a parallelized FFT, and a second workspace that includes
parallelized versions of one or more of the algorithm functionalities Covar, STAPWgts, and InvCovar,
will be delivered for acceptance tests.

72

7. RLSTAP HPC Parallelization Effort

Joe Fogler
Ruth Klundt

Ken Summers
Albuquerque High Performance Computing Center (AHPCC)

30 September, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

73

Objectives

• Provide access to massively parallel computing systems from within
the Khoros graphical programming environment Cantata

• Allow the creation of simple-to-use parallel glyphs

• Provide an interim solution that is usable immediately

• Anticipate and simplify software migration to future versions of
Khoros that will support parallelism

• Target the IBM SP at MHPCC as primary operating environment

• Make software tools configurable for multiple platforms

The solution: RLSTAP HPC

I

...&#ms«m-■■■■''•■'■•' -■■■..'■•■ ■. .**g^"*^il-■.■ ...mm^rnrn.

tew-; m-

ParaStart: designalesthe beginningof a parallel lineup

Parallel Glyphs: one foreach executable

Para Submit designates the end of a parallel lineup

?4

Outline

Introduction

- Objectives

- System Overview

System Design
- Features

- Parallel program flow

- Software layers

- Platform independence

Applications

- Parallel image processing

- Parallel RLSTAP routines

 RLSTAPHPC system design features

Platform executing Cantata is independent of parallel platform

Layered software structure

Software abstractions achieve parallel platform independence

Uses Khoros data file format between parallel executable routines
through Khoros Distributed Data Services

Parallel glyph behavior follows Khoros paradigm

Parallel program data flow

jm
Serial

Pirallel

''; pFFT

L, ,;■--- „
pWlenar pIFFT

.... i Command Lin«

■is;,innii:ii DitaFlow '

^—■ Control Flow

Control flows between glyphs in Cantata workspace

Data flows between agents on the parallel system

Agents handle the redistribution of data

75

Parallel program execution flow

Para_Start

- Initializes the parallel environment

Parallel algorithm glyphs

- Each parallel glyph generates a command line for
execution of parallel agents

Para_Submit

- Gathers distributed data from last parallel glyph
output

- Finalizes parallel environment

Software layers

RLSTAPHPC is implemented in five
software layers

Serial layers

- Kroutine

- Abstraction layer

Parallel layers

- Pkroutine

- Lpkroutine

- Lroutine

Parallel
Command Line

Parallel Command Line

Parallel KDF Data

Distributed, Raw Data

Kroutine layer (serial platform)

Constructed using Khoros standard CASE tools (i.e.
Craftsman and Composer)

Reads control information from the previous parallel glyph
or Parallel Start

Generates parallel commands to perform an associated
parallel function on the remote parallel platform

Passes on control information to the next parallel glyph

76

Abstraction layer (serial platform)

Interface between kroutine and parallel layers

Encapsulates platform-specific information necessary to
run parallel jobs

Takes commands generated by kroutine and uses them to
create parallel command lines

- in batch mode, commands may be collected for
submission

- in interactive mode, commands may be immediately
launched

Pkroutine layer (parallel platform)

The pkroutine is the top-level of the parallel agent associated
with the serial kroutine

Performs functions that are analogous to the kroutine on the
serial platform

Parses the command line received from the abstraction layer,
opens the data object, and passes it to the next layer

This layer can be migrated to track future developments in
Khoros top-level kroutine design with minimal impact on other
layers

Lpkroutine layer (parallel platform)

Checks the distribution state of the data object received from
pkroutine

Distributes or re-distributes the data if necessary

Reads data into memory and passes data pointer and parameters to
[routine

77

Lroutine layer (parallel platform)

The lroutine performs the actual parallel computation

Works on data stored in memory

Unaware of Khoros

Software abstractions achieve platform independence

Abstraction layer allows system to support multiple platforms

Parallel jobs may be executed

- sequentially

- simultaneously

- simultaneously using multiple platforms

Currently supported parallel operating environments and platforms

- IBM SP batch (local and remote)

- IBM SP interactive

- Cluster of workstations

Other POEs and platforms can be added by cloning existing shell
scripts and tailoring them to the local environment

 Other features of RLSTAP_HPC

The RLSTAP_HPC parallelization tools can be applied to any number
of algorithm problems both in and out of the RLSTAP environment

Parallel scientific libraries can be utilized in conjunction with
RLSTAPJHPC software tools to perform algorithm functions

Supported data distribution modes include those supported by Khoros
Parallel Data Services

Additional data distributions can be performed within parallel routines
using direct MPI calls provided they are gathered to a state that
Khoros PDS expects before exit
- Commonly occurs when utilizing parallel scientific libraries

- Can be employed to perform distributions in higher dimensions

78

Parallel edge detection workspace

m tm ****** »«— eg** cyphi ;

Wi BB

Parallel ft'i' performance

Timings for the FFT in MPL

2D Complex to Complex FFT
with PESSL routine pdcft2 on the Maui/SP2 - wide nodes

Size of array / # procrs 1 8 16
64x64
128 x 128
256x256
512x512
1024 x1024

2.33e-3 2.64e-3 1.93e-3 1.65e-3 2.52e-3
1.14e-2 9.24e-3 5.07e-3 3.59e-3 3.35e-3
4.86e-2 3.99e-2 2.05e-2 1.18e-2 8.05e-3
2.36e-l 1.74e-l 8.44e-2 4.66e-2 2.76e-2
9.20e-l 7.30e-l 3.48e-l 1.83e-l 1.06e-l

79

RLSTAP parallelization example: Inverse covariance

Inverse covariance calculation is utilized in STAP algorithms

Two methods of calculation

- Gaussian elimination

- Complex singular value decomposition

Parallelization can be achieved in two ways
- fine-grain parallelism in which a single matrix is distributed

among multiple processors
- coarse-grain parallelism in which different matrices are operated

upon by each processor

Two parallelization examples are presented here

- fine-grain inverse covariance using Gaussian elimination

Parallel image processing example: Edge detection

Executes from standard Khoros environment in Cantata

Utilizes parallel FFT glyph
- Can perform 2 or 3 dimensional complex FFT
- Implemented using calls to IBM's Parallel Engineering &

Scientific Subroutine Library (PESSL)

RLSTAP workspace with parallel inverse covariance

!S*^f9ss«^a!S«S8sw>i■la^*•*^ ~*

-i'i;:.. m"£im ■ .

„*>%&

■ **™*™*« ■'... } %MM& ..:■■

80

Summary

RLSTAP_HPC provides access to massively parallel computing
resources from within the Khoros graphical programming
environment Cantata

It allows the creation of simple-to-use parallel glyphs that execute
within the standard Khoros environment

The IBM SP environment at MHPCC is the target platform but
RLSTAP_HPC can also be executed on clusters of workstations

Parallel scientific libraries can be employed to perform algorithm
functions

RLSTAP_HPC has been demonstrated on both RLSTAP algorithm
components and generic parallel image processing problems

81

8. Para_tools Manual
Intro, Design, Instructions

Joe Fogler
Albuquerque High Performance Computing Center (AHPCC)

30 October, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

82

Chapter 1 - Introduction

A. Overview

The para_tools toolbox is a collection of tools and libraries to provide an interface from serial Khoros and
Cantata to parallel programs running on specialized hardware such as the IBM SP. Also included in the tool-
box are demonstrations of tool usage and techniques to be used when creating parallel Khoros jobs.

A.l. Objectives

The main purpose of this toolbox is to demonstrate an interim solution that allows parallel processing using
Khoros and the Khoros Cantata programming paradigm. Khoral Research has announced plans for a parallel
programming environment in Khoros, but this toolbox is for those who want to do parallel programming in
Khoros now.

Sub-goals include:

D Ability to run on multiple parallel platforms

D Executables to be as simple to use as a normal Khoros Cantata glyph

D Anticipate and simplify software migration to future version of Khoros

A.1.1. Solution

The solution, contained in this toolbox, is RLSTAP HPC. Parallel processing is supported using standard
Message Passing Interface (MPI) programming on a variety of parallel platforms. The demonstrations in this
toolbox are all RS/6000 based, but others can be supported.

To allow parallel processing in Cantata, special parallel glyphs are used These parallel glyphs may only be
executed in the Cantata environment when grouped in a lineup with a Parallel Start glyph in front and a Paral-
lel Submit glyph behind. Parallel Start and Parallel Submit are special purpose glyphs: Parallel Start initial-
izes the parallel environment and Parallel Submit gathers the distributed data and closes the parallel environ-
ment.

In keeping with the Cantata paradigm each parallel glyph represents an executable with data "pipes" between
glyphs. So, for each parallel glyph there is a parallel executable that will be executed on the parallel machine.
All inputs and outputs for the parallel glyphs must pass through Parallel Start and Parallel Submit, i.e., no
inputs can be connected to a parallel glyph that nave not come out of Parallel Start, and no outputs from a par-
allel glyph can be used until it is put into Parallel Submit This allows all parallel data to be synchronized on
the parallel machine. (There is nothing physically stopping someone from bypassing Parallel Start or Parallel
Submit and wiring an input directly into a parallel glyph, but the behavior of the glyph would be undefined

83

Introduction Para_tools Manual - Chapter 1

and it would almost certainly generate an error and quit. The output of a parallel glyph does not contain use-
ful information to the user and there is, therefore, no reason not to pipe it through Parallel Submit.)

This system allows multiple platforms to be used simply by changing the configuration of Parallel Start. As
we shall see later, this even allows multiple platforms to execute different portions of the same workspace
simultaneously. Implied is the fact that the parallel hardware need not (and, in fact, frequently is not) the
same as the serial hardware running Cantata.

With the addition of Parallel Start and Parallel Submit the use of parallel glyphs is exactly the same as for
standard serial glyphs.

Parallel programs mat can be integrated into Cantata using these tools and techniques are ordinary parallel
codes: All examples here use MPI and C but they could, be extended to PVM or other programming lan-
guages such as FORTRAN 90 or HPF.

The demonstrations in this toolbox show examples running Khoros on AIX workstations and the parallel code
on the IBM SP both interactively and batch, and on a cluster of RS6000 workstations.

04

Chapter 2 - Design

A. System Design

RLSTAP_HPC was designed with the following features:

D The Cantata workstation is independent of the parallel platform.

D All parallel code and structures is platform independent.

D Khoros data format is used throughout. This means there is no data conversion required between
the serial and parallel environments.

D The parallel glyph behavior follows the Khoros paradigm (e.g., the inputs and outputs are defined in
a standard Khoros manner, the idea of building blocks is incorporated, etc.).

In order to facilitate several of the above features a layered structure was adopted. This structure can be
viewed from two different perspectives: The horizontal and the vertical. Horizontally is the program flow
through a set of parallel glyphs. Vertically is the five layer structure used to implement the program flow.

A.l. Parallel Program Flow

In a normal Cantata program control and data flows through "pipes" from one glyph to the next A glyph does
not execute until all of its inputs are ready, and enables its output/» when it finishes.

In a parallel glyph lineup (all the glyphs from the Parallel Start to the Parallel submit, inclusive) only control
and some administrative data flows through the pipe. Associated with each parallel glyph is the normal
Khoros serial executable and a new parallel executable, referred to as an "agent". The agent is activated by
the serial executable via the agent's command line interface. Data flows directly from one agent to the next.

So, for example, the Parallel Start glyph splits the control and data flow. The first parallel glyph (the one
immediately following Parallel Start) receives the control flow, while its associated agent receives the data
flow. When Cantata activates the parallel glyph the glyph uses the command line interface to "call" the agent.
When the parallel computation is completed data is passed to the input of the next agent, and control is passed
(via Cantata) to the next parallel glyph. The control and data streams are rejoined by the Parallel Submit
glyph

This simple model is basically complete, but there are a few more details. Each agent checks the data distri-
bution of its input against the distribution it requires. If they are different, it redistributes the data. Using this
mechanism the data is actually distributed by the agent associated with the first parallel glyph in the lineup,
not by Parallel Start When the data stream is rejoined to the control stream, it is actually done by an agent

85

associated with Parallel Submit which gathers the data back from its distributed state. The implementation of
this model is quite a bit more complex (surprise!). Which leads us to the vertical model, layers.

A.2. Layers

The implementation of a parallel executable, from Cantata glyph to raw MPI code consists of five layers:

1. Kroutine

2. Abstract layer

3. Pkroutine

4. Lkroutine

5. Lroutine

A.2.1. Kroutine

The main difference between a serial Kroutine and a parallel Kroutine is where the data is. In the serial sce-
nario the data to be manipulated is passed into and out of the program through the input and output parame-
ters on the command line. In the parallel case these inputs and outputs correspond to adrninistrative data
about the parallel process. This is possible because the parallel data is being passed between modules at a
lower level (and, as a result, being passed on the parallel machine, not the controlling serial machine).

Parallel Kroutines are normal Khoros Kroutines. Their job is to accept input, do any processing on it that may
be necessary, pass the data to the Abstract layer, process the results from the Abstract layer, and pass on the
output.

The structure of a parallel Kroutine is as follows.

a Normal housekeeping chores. These include allocating memory, declaring variables, etc.

D Read control information from each input. This control information is in the form of a C structure
and includes

• currentProcessNum - incremental count of how many parallel glyphs have been processed.

• nNodes ~ the number of nodes the current parallel job uses.

• stdo - flag indicating if standard output should be displayed by each glyph.

86

timeStamp -- a string containing the time and date the job started. This is used to sync the tim-
ing of parallel threads in the job.

initialDir - initial directory where the parallel job is started.

jobName -- name of this job (theoretically unique)

class -- job class. This is typically used on batch SP nodes to specify the queue the job will run
in.

notification -- a string indicating the user notification action(s) to be taken. Used mostly by the
SP batch processor.

user -- who started this job?

display - string where the DISPLAY variable is stored. Used for batch mode.

inDataFileName -- the name of the actual input file used by the parallel routine for this input.

outDataFileName -- the name of the actual output file used by the parallel routine for this out-
put. This value is not actually read in, but generated just before it is used.

a Prepare and call the Abstract layer. Two items are always passed to the Abstract layer: the job name
(obtained from jobName, above) and the parallel job binary directory (obtained from the environ-
ment). These items allow the Abstract layer to find more information it may require that was stored
during the execution of the Parallel Start glyph. The Kroutine then supplies the command line of
the parallel job that must be run This allows the Abstract layer to do whatever is necessary to pre-
pare a particular parallel environment, then execute the command line passed to it.

A mechanism is implemented which allows the Kroutine to tell the Abstract layer that a temporary
directory is to be used. If the substring "@localscratch" is included in a path name or a command
line string it is automatically converted by the Abstract layer to a path local to the parallel nodes
being used.

D Output control data. The control data for the next parallel operation is updated (the input file is
changed to the current output file, etc.) and written to the output file of the Kroutine.

D Cleanup. Normal cleanup items like free memory close files, etc.

A.2.2. Abstract layer

The Abstract layer provides a mechanism for simply and quickly changing and/or adding machine specific
capabilities to the parallel execution environment As such it is an interface between the serial Kroutine and
the parallel kroutine, the Pkroutine. This layer is highly platform dependent on the parallel architecture being
used Included in this toolbox are several examples of script sets that implement the abstract layer of the job

87

Submission process:

D para_tools/bin/lBM_SP_Batch submits a job to the IBM LoadLcveler for batch processing, and
waits for the job to complete before returning. Each parallel glyph ends up creating an entry in a
LoadLcveler script which is then submitted by Parallel Submit.

D para_lools/bin/IBM_SP_Interaclivc allows a job to be run on a set of interactive nodes using inter-
active POE. Each glyph ends up running the parallel code immediately, leaving Parallel Submit to
merely gather the distributed data.

D para_tools/bin/CIRT_SP2 is a quick-and-dirty implementation of a remote machine batch submis-
sion. Using remote shells and remote copies the data is copied to the remote machine, the job sub-
mitted, and, on completion, the output data is copied back.

D para_tools/bin/RS6000_Workstations is an example of running on a cluster of workstations. Unlike
the SP interactive example this implementation behaves more like the batch processes, gathering
command lines in a script file and allowing Parallel Submit to run them all.

These abstract layer directories show up as options in Parallel Start to specify the parallel platform to be used.

NOTE: These directories hang off the toolbox /bin directory but are not included in the toolbox make system.
Any changes or new abstract layers must be constructed entirely by hand.

Due to the vast differences between two installations of a machine type, not to mention the difference between
the installation of two machines of completely different type, the abstract layer must be customized for each
individual machine and site. The recommended method is to copy one of the examples provided in this tool-
box and modify it, rather than starting from scratch.

There are three main scripts (or programs, if the implementer so chooses) to perform all functions:

D para_start.cmd — This script accepts all job information gathered by the Parallel Start glyph and
starts the processes of building the parallel job. This includes dumping most of the information
from the command line into a temporary file so that subsequent scripts can find it. This allows
information such as the number of nodes, queue, etc. to be passed in by Parallel Start and ignored
by the other glyphs in the parallel lineup.

This script will also open any batch control files required, etc.

D para_op.cmd ~ This script is the one called by all the parallel glyphs with the exception of Parallel
Start. On the command line it expects to see the job name, by which it identifies the temporary file
created by para_startcmd, the directory where the parallel job binaries can be found, followed by
the command line to be executed on the parallel machine. This command line does NOT include
parallel execution information such as "poe", but just a command line consisting of the executable
path/name and the command parameters. The script then does whatever is necessary to execute the
command line on each node.

88

For a batch job, for instance, para_op.cmd might put

"poe commandjine"

in a batch control file, which will be executed by para_submit.cmd. For an interactive job in might
just execute the above line directly.

para_op.cmd is also called by Parallel Submit to perform the data gather, since gather is a parallel
routine just like any other.

para_submit.cmd - This script is called by the Parallel Submit glyph. It does whatever is required
to wrap up the parallel execution. In a batch environment, for instance, it might submit the batch
control file to the batch scheduler and wait for a response. In an interactive environment it might
only have to delete the temporary file created by para_start.cmd and do any other cleanup required.

Any other files, programs, or scripts which may be required by these three scripts can also be included in the
same directory. In this toolbox the IBM_SP_Batch directory contains not only the three required scripts, but
scripts to submit batch jobs to LoadLeveler, wait for their return, and check the status of submitted jobs.

As can be seen the manner in which the parallel job appears to execute (to the user sitting in front of a Cantata
screen) can vary greatly. An interactive system may take a considerable amount of time for every glyph in the
parallel lineup, while a batch environment might whiz through all of the glyphs until Parallel Submit is
encountered, then seem to freeze for a long period of time as the batch job is submitted, queued, executed, and
returned

A.2.3. Pkroutine

The Pkroutine is the first layer to be executed on the parallel machine. Its function is to provide a place-
holder for future releases of Khoros, where this layer will be incorporated into Khoros itself. In some ways it
resembles a Khoros kroutine: the major difference is that it does not contain a pane (a pane would be a pain
to reference from the parallel machine). It opens the data input file, passes that data to the Lkroutine, gets
data back from he Lkroutine, and writes it to the output. It is not recommended that anything else be done at
this level, as it will go away in future releases of Khoros.

A.2.4. Lkroutine

The primary responsibility of the Lkroutine layer is to deal with Khoros. All data in the system uses Khoros
KDF file format In order to ease conversion of existing MPI codes into parallel Khoros codes the Lkroutine
layer takes responsibility for converting between KDF format and a raw data format more palatable to an MPI
program. This layer is also assigned the responsibility for data distribution.

The Lkroutine receives trie data from the Pkroutine in KDF format It then checks the distribution of the data:
if it is correct the data is passed to the Lroutine. If the data is not distributed, or is distributed incorrectly, the
Lkroutine (re)distributes it appropriately; then passes it to the Lroutine. Likewise, when the Lroutine returns

89

dala the Lkroutinc converts il back to KDF format and passes il back up to the Pkrouline.

The Lkroutinc must be coded with the distribution requirements of the Lroutinc. II" the Lroutinc can accept
multiple input distributions, the Lroutinc should also accept those distributions. If the Lroutinc expects a dis-
tribution not supported by Klioros Data Distribution Services, the correct distribution should be created in (he
Lkroutinc using standard MP1 calls. Likewise the output should be labeled with (he correct current distribu-
tion, which is whatever distribution the Lroutinc hands the data back in.

The idea here is to allow the use of existing MPI codes by merely stripping the distribution details out (letting
the Lroutinc handle that) and calling it from the Lroutinc. Minimal conversion effort.

A.2.5. Lroutine

The Lroutine is a raw MPI code. It knows nothing of Khoros data objects. Il can assume the data is already
distributed in an acceptable format. This layer uses standard MPI calls to manipulate data. A library call may
take the place of (he Lroutine (essentially the library becomes the Lroutine), as was done in the cFFT glyph
in this toolbox. The essence here is that the Lroutine is a pure MPI program, with no knowledge of Khoros or
the Cantata environment.

A.3. Parallel glyphs

There are three types of parallel glyphs:

1. Parallel Start

2. Parallel Operation

3. Parallel Submit

All three types of glyphs are required in a parallel lineup.

A.3.1. Parallel Start

The Parallel Start type is both a type and a glyph. The only glyph of this type is the Parallel Start glyph itself.
The purpose of the Parallel start glyph, from the users perspective, is to delineate the beginning of a parallel
lineup.

Most of the global parameters required by the parallel job are specified in the pane of Parallel Start. Among
the items that can be specified in the pane are:

D Input and output filenames

90

D Standard output suppression - suppress standard output from all glyphs in the parallel lineup

D Parallel environment -- the parallel environment to use when executing the lineup

D Initial Directory — directory where jobs are executed/submitted

G Job Name -- a name for the parallel lineup that must be unique on the workspace

D Number of parallel nodes

D Class -- queue name for batch jobs

D Notify user after batch completion

From the programmer's perspective Parallel Start allows the system to prepare whatever resources might be
required by subsequent Parallel Operation glyphs. The only real invariant here is that, at the abstract layer,
Parallel Start must write a temporary file so Parallel Operation and Parallel Submit glyphs can get information
specified in the Parallel Start glyph.

Currently every condition that applies to any parallel environment is included on the Parallel Start pane. This
means that, although data is gathered for all fields, and passed to the abstract layer, all of the data may not be
relevant to the environment selected. For example the Class field does not apply to interactive execution,
since it refers to the batch queue to be used. While this "shotgun" approach may be inefficient, it is easy to
code and maintain.

One thing the programmer must look out for when updating the pane is the "Environment" field. This field
shows the name of a directory where the abstract layer command files can be found. This is hard-wired in the
field, and in the toolbox. There is no enforcement to make sure they agree. Make sure the environments
listed on the pane match those in the $TOOLBOX/bin directory. Similarly the Class field and Notification
field are mated to code in the abstract layer mat must be matched by hand.

All inputs from the parallel lineup that come from "outside," i.e., from serial glyphs, must pass through the
Parallel Start glyph. Currently the Parallel Start glyph supports four inputs and outputs. This number is arbi-
trary, and is easily changed in the Parallel Start Kroutine.

A.3.2. Parallel Operation

All glyphs that perform some sort of parallel calculation are of the Parallel Operation type. Examples in this
toolbox include Parallel cFFT and Parallel Multiply. Operations of this type take distributed data as input,
manipulate the data, and output distributed data. Each Parallel Operation redistributes the data if it is not
already in an acceptable format (hence the first Parallel Operation in a lineup will take undistributed data and
distribute it as it pleases). If the user is not careful, this could result in a redistribution between every glyph in
the lineup.

91

A.3.3. Parallel Submit

Parallel Submit, like Parallel Start, has only one glyph in the type: The Parallel Submit glyph. Parallel Submit
(so named because, in a batch system, this is where the job finally gets submitted) has two duties: to gather
the distributed data so that it may be passed to subsequent serial glyphs, and clean up the parallel environ-
ment. An example of the kind of cleanup Parallel Submit should do is deleting the temporary file Parallel
Start created on the abstract layer. Also, in a batch environment this is likely where the batch job is actually
submitted.

All outputs from the parallel lineup that go "outside" to serial glyphs must pass through the Parallel Submit
glyph. Currently the Parallel Submit glyph supports four inputs and outputs. This number is arbitrary, and is
easily changed in the Parallel Submit Kroutine.

A.4. Using the parallel glyphs

In order to execute algorithms using (lie parallel glyphs the user must do the following tilings.

1. Place a Parallel Start and a Parallel Submit glyph on the workspace.

2. Select the parallel algorithm glyphs you want to use and place them between the Parallel Start and
Parallel Submit glyphs on the workspace. NOTE: While you can place normal serial Khoros
glyphs in between the Parallel Start and Parallel Submit glyphs, and even hook them up, they will
NOT work properly. They will try to use the administrative data being passed between parallel
glyphs, which is not the same as the parallel data. Do not do this! Likewise, parallel glyphs do not
work outside a parallel lineup bracketed by Parallel Start and Parallel Submit.

3. Wire all inputs from the serial world to the inputs of the Parallel Start glyph.

4. Wire the corresponding outputs of Parallel Start to the parallel glyphs which require the input.

5. Interconnect the parallel glyphs in the normal manner.

6. Wire all outputs to the serial world to the inputs of Parallel Submit.

7. Wire the corresponding outputs of Parallel Submit to the appropriate serial glyphs.

8. Open the Parallel Start pane and select a parallel environment, and fill in the appropriate informa-
tion for that environment.

9. Be sure to set the parallel glyph panes appropriately.

10. Run the lineup.

92

B. Object Manifest

Parallel Tools toolbox Object Manifest

Category
Subcategory

Operator Description Executable

2d wiener filter pkwiener

dev

support

pkgather

scatter routine pkscatter

para_tools

2D Filters Wiener 2D Filter Wiener filter. Expects 2D FFTed data. Wiener_2D_filter

para_tools

Arithmetic

Para Multiply Quick and dirty pointwise multiply Para_Multiply

pkMultiply Quick and dirty pointwise multiply (parallel portion) pkMultiply

para_tools

Required

Para Start Parallel start module Parallel_Start

Para Submit Parallel submission module Parallel_Submlt

para_tools

Transform

Parallel complex FFT (2D/3D) pkcfft

ParaCFFT Parallel Complex FFT, 2 or 3D CFFT

para_tooIs

support Scatter Scatter a KDF object using DDS Scatter

93

Chapter 3 - Instructions

A. How to build the abstract layer

The abstract layer is the interface between the Khoros Cantata glyphs and the individual parallel environ-
ments. While the glyphs can specify high-level things like the number of processors and the like, the abstract
layer is where those abstractions are translated into commands and programs to execute on a particular paral-
lel environment. This section will explain how the abstract layer does what it does, and how to construct one
for a new parallel architecture.

A.l. How the abstract layer works

There are three major components to the abstract layer:

D para_start.cmd

D para_op.cmd

D para_submit.cmd

para_start.cmd and para_submit.cmd correspond directly to the Parallel Start and Parallel Submit glyphs,
respectively.

The Parallel Start glyph calls para_startcmd, passing all of the information gathered in the Parallel Start pane.
Among other things this information contains the job name for this parallel lineup. Using this job name (and,
depending on the parallel architecture, the user's UED and/or PID) a temporary file is created which contains
all the information received from the Parallel Start pane that is pertinent to this particular parallel architecture.
In this way the various components of the abstract layer have access the the pane information from the Paral-
lel Start glyph, without the parallel glyphs having to tote this information around and download it to the
abstract layer each time. Only the job name is needed to find this temporary file. After the temporary file is
built the para_startcmd program must do whatever is necessary to set up the parallel environment

The parallel glyphs (such as a parallel FFT glyph) all call para_op.cmd. para_op.cmd uses the data stored in
the temporary file created by para_startcmd, along with the command line to run the Pkroutine supplied by
the parallel glyph, and creates a command line that will execute the Pkroutine on the specific parallel architec-
ture. This command line can be stored to a file, as would happen in a batch system, or can be executed imme-
diately, in an interactive parallel environment, for instance.

The Parallel Submit glyph calls para_submiLcmd. All of the pane information is passed, but that only con-
sists of the input and output file names. para_submitcmd does whatever cleanup is necessary to the parallel
environment This includes deleting any temporary files created by para_startcmd and para_op.cmd.
para_submitcmd might also submit a command file to the scheduler in a batch environment

94

A.2. The individual components

In this section wc will use, as an example, (he IBM SP batch abstract layer provided in this toolbox ($TOOL-
BOX/bin/IBM_SP_Batch). This abstract layer provides complete services to IBM LoadLeveler, a batch
scheduler used on the IBM SP.

A.2.1. para_start.cmd

#!/bin/ksh

para_start.cmd

Set up a LoadLeveler script in preparation to submit to an IBM SP.
Two scripts are created... a LoadLeveler script and a command file. The
LoadLeveler script has the LoadLeveler parameters in it (some determined
by command line inputs, some hard-wired).

Globals

mkdir= "/usr/bin/mkdir"

Check to make sure $TMPDIR != /usr/tmp: That isn't local on the SP's

if [[$TMPDIR = 7usr/tmp"]]
then

print -u2 'ERROR: $TMPDIR must NOT be defined to be /usr/tmp'
exit 1

fi

Parse the command line for the arguments we need. Extraneous args discarded.

while [[$1 !=""]]
do

arg=$l
shift
if[[$arg = "-initiaJDir"]]
then

initialDir=$l
elif[[$arg = "-jobName"]]
then
jobName=$l

elif[[$arg = "-nNodesM]]
then

nNodes=$l

95

elif [[$arg = "-class"]]
then
class=$l

elif [[$arg = "-notifyUser"]]
then

notifyUser=$l
elif [[$arg = "-notification"]]
then
notification=$l

elif [[$arg = "-parJobBinDir"]]
then
parJobBinDir=$l

fi
done

class and notification come back as numbers and must be converted to text

******************** NOTE: This requires MANUAL coordination with the
ar 'F *F>F'F'F'FT 'FJF 'F>F'F*F•¥'F 'FSF 'F'F 'F T")3T"3 Sf3T"f 031T1

case $class in
1) class=short;;
2) class=mixed;;
3) class=long;;
4) class=bigmem;;
5) class=large;;
6) class=medium;;
7) class=small_long;;
8) class=small_short;;
*) class=short;; # make short the default

esac
case $notification in

1) notification=always;;
2) notification=complete;;
3) notification=error;;
4) notification=never;;
5) notification=start;;
*) notification=never;; # make never the default

esac

Store all processed input EXCEPT the jobName in the file SjobName.abs.tmp.
This is where subsiquent modules will go to find this information out It
is deleted by the para_submit.cmd script.

tmpfile="$TMPDW$jobName.abs.tmpM

print - -initialDir $initialDir > $tmpfile

96

print -- -jobName $jobName » $tmpfile
print - -nNodes SnNodes » $tmpfile
print -- -class $class » $tmpfile
print ~ -notifyUser $notifyUser » $tmpfile
print - -notification $notification » $tmpfile

Build the LoadLeveler file. The filename is $jobName.ll (e.g., pkjobl.ll)

Hfile=,,$initialDir/$jobName.U"
cmdfile="$initialDir/$jobName.cmds"
#print $imie

print "#" . > $llfile
print "# Script initially generated from Para Start" » $llfile
print "#•" » Slffile
print "# Ensure this is C-shell script" » Sllfile
print "#!/bin/csh" » $llfile
print "#" » $llfile
print "# Job Command Keyword Initialization" » $llfile
print "#@ shell = /bin/csh" » $llfile
print "#@ cpujimit = 600" » $llfile
print "#@ wall_clock_limit = 600" » $llfile
print '#@ requirements = (Adapter = "hps_user")' » $llfile
print "#@ checkpoint = no" » $llfile
print "#@ restart = no" » $llfile
print "#@job_type = parallel" » $llfile
print "#@ job_name = $jobName" » $llffle
print '#@ output = $(job_name).$(Cluster).out' » $llfile
print '#@ error = $(job_name).$(Cluster).err' » $llfile
print "#@ initialdir = $initialDir" » $llfile
print "#@ min_processors = SnNodes" » $llfile
print "#@ max_processors = $nNodes" » $Ilfile
print "#@ class = $class" » $Hfile
print "#@ notification = $notification" » $llfile
print M#@ notify_user = $notifyUser" » $llfile
print "#@ group = asp" »$llfile

Build environment variables

environment="environment ="
environment="$environment MP_INFOLEVEL = 2"
environment="$environment;MP_LABELIO = yes"
environment="$environment;MP_STDOUTMODE = ordered"
environment="$environment;MP_EUILIB = us"
environment="$environment;MP_RESD = yes"
cnvironment=M$environment;MP_EUIDEVIGE = cssO"

97

environment="$environment;MP_RMPOOL = 0"
environment="$environment;MP_HOSTFILE = NULL"
environment="$environment;MP_PULSE = 0"
environment="$environment;DISPLAY = $DISPLAY"
environment="$environment;MP_NEWJOB = yes"
environment="$environment;"

print "#@ Senvironment" » $llfile
print "#@ queue" » $llfile
print "#" » $llfile
print "poe -cmdfile $initialDir/$jobName.cmds" » $llfile

Make the temporary directory for intermediate data on the nodes

rm -f $cmdfile > /dev/null 2> /dev/null
print $mkdir /localscratch/asp_$jobName » $cmdfile

The first thing the script does is to check for invalid values for the environment variable TMPDIR. Since on
the IBM_SP /usr/tmp is often shared among the nodes it will not do as a temporary directory. The program
dies if this is the case, as there is no point in doing any more calculation.

Next the program parses the command line looking for arguments, which are as follows. Except as noted all
values are obtained from the Parallel Start pane.

D initialDir - The directory given to LoadLeveler as the initial directory.

D jobName ~ This name is used to uniquely identify a parallel job and is used in the construction of
temporary file names and the like. This is one of two parameters passed by ALL parallel glyphs.

D nNodes — The number of nodes to be requested

D class - The queue in which LoadLeveler is to place the job.

D notifyUser - The email address of the user to be notified

D notification — A flag telling LoadLeveler to notify or not notify the user by email.

D parJobBinDir — The binary directory where the parallel executables can be found This is the sec-
ond parameter passed by every parallel glyph. It is not taken from the Parallel Start pane, but is in
fact the binary directory of the parallel glyph initiating the call.

Next is a modification of the values received for class and notification. Since Khoros returns the number of
the list box selected instead of the label, this conversion re-associates the name with the variable. Nötice that
there is no automatic method for keeping this straight., it is strictly a manual process.

98

The values of the command line parameters are placed in a temporary file where the other abstract layer pro-
grams can find it, in this case in the current temporary directory with a filename constructed from the unique
job name (which is the same for all parallel glyphs in a lineup).

Now the script builds the LoadLeveler command files. These files consist of a LoadLeveler script, and a POE
command script. In this way several executables can be run sequentially without reallocating nodes and
resources between each one. Most of the LoadLeveler parameters are hard-wired, with the values received on
the command line substituted in. A more flexible system would ask the user more questions, and hard-wire
less of the parameters. One critical parameter that is hardwired in this example is the time limits. These
probably would be variables set on the Parallel Start pane.

Most of the environment is also hard-wired. This reduces the risk of user error (very easy with these vari-
ables) but limits flexibility.

The last line of the LoadLeveler script is the invocation of POE, with the POE command file as input. The
only line in the POE command file at this point is a command to make a temporary directory on each node.

So, when this script is finished running, there is a complete LoadLeveler script, ready for submission, a POE
command file with the first parallel command in it, and a temporary file with the parameters extracted from
the Parallel Start pane in it for downstream processes to reference.

A.2.2. para_op.cmd

#!/bin/ksh

para_op.cmd

Append the input command to the command file. This script allows any of the
inputs/outputs to contain the string" ©localscratch". The string
"/localscratch/asp_XXX" is substituted for that string, where XXX is the
#jobname. NOTE: This means that ifajobname is not supplied _BEFORE_ the
"/localscratch" string on the command line, this substitution will NOT work
correctly!

#echo$*

Parse the command line for the arguments we need. Extraneous args discarded.

jobName=$l
shift
parJobBinDir=$l
shift
cmdOp='echo $* I sed -e s?@loc^scratch?/localscratch/asp_$jobName?g,

Dig through the temporary file created by para_starLcmd for rest of the

99

arguments we need.

exec 3< $TMPDIR/$jobName.abs.tmp
read -u3 var value
while [[$var != ""]]
do
if [[$var = "-initialDir"]]
then
initialDir=$value

fi
read -u3 var value

done
exec 3<&-

Append a command to the command file. The filename is SjobName.cmds
(e.g., pkjobl.cmds)

cmdfile="$initialDir/$jobName.cmds" #print $cmdfile

print time $parJobBinDir/$cmdOp » $cmdfile

In the batch environment para_op.cmd has a very simple job. First it extracts the job name and the parallel
job binary directory from the command line. Everything else on the command line is assumed to be the paral-
lel executable name and its parameters.

In these scripts a simple mechanism is implemented to know when to assign a file to temporary local storage
on a node. When a file, lets say a temporary data file that is passed from one parallel glyph to the next, needs
to be stored in local temporary storage the value "@localscratch" is embedded in the path. The sed operation
in this script removes that value and replaces it with a temporary directory local to each node. In the case of
the IBM SP at Maui that directory is "/localscratch".

Next the script loads the environment variables it will need from the temporary file created by para_startcmd
In this case only the initial directory is required. Now the script can do what it is here for: open the POE
command file and append a line to execute the parallel command passed to it from the command line (with the
appropriate modifications).

A.2.3. para_submitcmd

#!/bin/ksh

para_submitcmd

Append to the command file to gather the results and submit the LoadLeveler
script This script allows any of the inputs to contain the string
#" ©localscratch". The string M/localscrateh/asp_XXXX" is substituted for
that string, where XXXX is the jobname. NÖTE: This means that if a

100

jobname is not supplied _BEFORE_ the "/localscratch" string on the command
line, this substitution will NOT work correctly!

#echo $*

Globals

rm="/usr/bin/rm"

Parse the command line for the arguments we need. Extraneous args discarded.

while [[$1 !=""]]
do

flag=$l
shift

Replace "©localscratch" with "/localscratch"
if [[$1 = ©localscratch*]]
then

arg="/localscratch/asp_$jobName"${l#@localscratch}
else

arg=$l
fi

if[[$flag = "-jobName"]]
then
jobName=$arg

eIif[[$flag = "-binDir"]]
then

parJobBinDir=$arg
elif [[$flag = "-initialDir"]]
then

ihitialDir=$arg
fi

done

Append a command to the command file. The filename is $jobName.cmds
(e.g., pkjobl.cmds)

llfile="$initialDir/$jobName.U"
cmdfile="$initialDir/$jobName.cmds"

print "$rm-rf/localscratch/asp_$jobName" »$cmdfile

101

Submit the job to LoadLeveler

jobID='$parJobBinDir/IBM_SP_Batch/llsubwait$llfile$parJobBinDir/IBM_SP_Batch'

Erase the temporary information file created by para_start.cmd.

rm -f "$TMPDIR/$jobName.abs.tmp" > /dev/null 2> /dev/null

Copy the parallel output to stdout

cat $initialDir/$jobName.${jobID##*. }.out

In the batch system, para_submit.cmd does a great deal of the work. First the command line is parsed for
input variables. The temporary directory substitution is made on each parameter, if necessary. The parame-
ters are

D jobName - The unique job name of the lineup.

D parJobBinDir -- The directory where the parallel binary to be executed can be found (in this case
where the routines to submit a LoadLeveler job can be found).

D initialDir - The directory where the LoadLeveler script and POE command file are stored.

A command is added to the POE command file to remove the temporary directory on each node that was cre-
ated by para_startcmd. Then the job is submitted to the LoadLeveler via another script called "llsubwait".
We won't discuss how llsubwait works here: suffice it to say that it submits the job to LoadLeveler, then waits
for it to complete before returning. If you wish to know more the script itself can be found at $TOOL-
BOX/bin/IBM_SP_Batch/llsubwait.

Finally the output of the job is copied to standard out. This allows the output to be viewed as a note to the
glyph.

B. Instructions for Creation of a Parallel Toolbox

Kroutines and their associated Pkroutines may be created and maintained as regular Khoros objects, with one
exception in the case of the Pkroutine which will be explained later. The two objects must be in the same tool-
box. Alternatively, a Kroutine may be constructed to launch a parallel routine which is not a Khoros object, as
long as the binary or a link to it appears in the bin directory of the Kroutine's toolbox. It is advisable to keep
objects destined for parallel execution in a toolbox separate from normal serial objects since modifications
will be made to the toolbox configuration files.

The Khoros distributed data services toolboxes, Message and Paraserv, must be installed on the system. The

102

Para_tools toolbox should be accessible on the system, and a reference to it should appear in the user's .Tool-
boxes file.

B.l. Modify the Toolbox Configuration Files to Support Parallel Executions

After the user's toolbox has been created via craftsman, the following steps set up access to the Khoros
PARASERV toolbox, MPI and any required scientific libraries. The instructions inside brackets <> refer to the
sequence of Khoros operations to follow to make the needed change.

1. Edit the TOOLBOX.def file

<craftsman : Toolbox Attributes : Files : Edit Imake config file>

This change is required to include distributed data services.

D replace: '#include DESIGNJNCLUDE'

D with: '#include PARASERVJNCLUDE'

This change will depend on what (if any) parallel libraries are referenced from the parallel executable.
For example if the parallel code uses calls to PESSL routines, library definitions for the system PESSL
libraries and any dependencies should appear here.

D add: 'AddLibrary(pessl, C, /usr/lib);'

D add: 'AddLibrary(blacs, C, /usr/lib);'

Also if the home directory of the libraries defined is not on the link path, it may be necessary to add a
reference to it, for example:

D add: 'TOOLBOXJLIBDIR +<= -L/usr/local/scalapack,

2. Edit the TOOLBOXii file

<craftsman: Toolbox Attributes : Files: Edit toolbox include>

a replace: '#üiclude <design.h>'

D with: '#include <paraserv.h>'

O add: #define NAME_SIZE 1024

103

D add: #defme CMDJSIZE 8196

D add: mpiStruct definition under typedefs

typedef struct {
int currentProcessNum; /* incremental count of glyph count so far */
int nNodes; /* Number of nodes */
int stdo; /* should standard output be displayed by each glyph (flag) */
char timeStamp[50]; /* time & date Para Start started */
char opEnv[500]; /* currently unused */
char initialDir[500]; /* initial parallel job directory */
char jobName[50]; /* unique jobname of this job (not enforced!)*/
char jobEnvName [50]; /* currently unused */
char class[50]; /* class of parallel job (e.g. short, long, medium) */
char notification[50]; /* what user notification should occur */
char user[50]; /* who started this job? */
char display[100]; /* DISPLAY environment variable */
char localMachine[50]; /* currently unused */
char stdoutFileName[500]; /* currently unused */
char stderrFileName[500]; /* currently unused */
char inDataFileName[500]; /* parallel data input file name */
char outDataFileName[500]; /* parallel data output file name */ } mpiStruct;

At this point Kroutines and Pkroutines can be added to the toolbox, via the normal Khoros craftsman 'Add
Object' menu selection.

B.2. Create Para kroutine

lb create a Kroutine which will launch a parallel job as part of the Para_Start/Para_Submit lineup:

1. Create a new kroutine object, with a pane configured as required for the parameters needed by the
parallel executable.

2. Replace the body of the kroutine.c file in the source directory with the Parajcroutine.tmpl tem-
plate.

3. Edit the kroutine.c file to accommodate parameters specific to this application. The template file
contains guidance on this.

104

B.3. Create Pkroutine

To create the parallel executable which will be launched by the above Kroutine:

1. Create a new kroutine object, and select the 'Do Not Install in Cantata' option.

2. Replace the kroutine.c file with the parallel executable main.c, and add any files for routines called
from main.c. Also replace the kroutine.h with an appropriate .h file, and delete usage.c if not used.

3. In the source directory, edit the Imakefile:

D add 'EXTRA_LOAD_FLAGS = -F/usr/lpp/ppe.poe/lib/poe.cfg:cc' at the bottom, in the cus-
tomization section

This flag is necessary to run C executables under IBM's Parallel Operating Environment. In general the
EXTRA_LOAD_FLAGS variable is a way to force the Khoros Makefile to append things to the link
line for your object.

4. Remake the makefiles.

VERY IMPORTANT: Do not use the 'Generate code' button in Composer on this object. This would
write over the main.c source file. The one exception to behavior of Pkroutines as compared with the usual
behavior of Khoros objects is that in the current release of Khoros a typical kroutine cannot be executed on a
remote computer since it will expect to have its pane available. So Pkroutines can be created and maintained
by the Khoros Makefile system but should not make any 'kclui' type calls. The kclui_initialize call is replaced
by Ghostwriter when the generate code button in Composer is used. This caveat will not be necessary in
some future release of Khoros.

B.4. Add Lroutines

Any files with subroutines called from the Pkroutine can be added to the object using the craftsman 'Add file'
button. Once the file is present, remake the makefile to add it to the linking process.

C. Templates

The objects 'cFFT and 'pkcfft' which appear in the Parajools toolbox have been used as a basis for the tem-
plates. The lpkcfft and lcfft routines also provide examples of the use of the Khoros distributed data services
calls, and basic setup and use of PESSL routines.

105

C.l. Template for the Para_kroutine

/*
* Khoros: Id
*/

#if !defined(_lint) && !defined(_CODECENTER_)
static char rcsidf] = "Khoros: Id";
#endif

/*
* Copyright (C) 1993 - 1996, Khoral Research, Inc., ("KRI").
* All rights reserved. See $BOOTSTRAP/repos/license/License or run klicense.
*/

»»
»» Main program for YourProgram
»»
»» Private:
»» main
»»
»» Static:
»» Public:
»»
»»»»>»»»»»»»»»» ««««««««««««« */

#include "YourProgram.h"

clui_info_struct *clui_info = NULL;

/*

Routine Name: main()

Purpose: main program for YourProgram

■1 I I I I I I H I I II I I I I I II I I I I II u I I M II I I I 1 I I I I 11 i m M III I II I
+ This kroutine will be executed by a glyph in a
+ parallel lineup. Its primary purpose is to generate
+ the command line for the parallel executable
+ associated with it It is best to generate the
+ kroutine via craftsman and fill in the required
+ parallel lineup management code via cut/paste.
■H H I I I I I I II II I M I II M I I I I I I I I I I M M II I I I I M I I I I I I I I II I -M

Input:
char *duiJnfo->inData_file; {First Input data object}
irit clui_info->inData_flag; {TRUE if -inData specified}

106

char *cluLinfo->outData_file; {Resulting output data object}
int clui_info->outData_fiag; {TRUE if -outData specified}

++^^++++-H-+++++^^-+++++-H-++^-+^^++++^-^^+++++^^++++-H-+++^-+^^
+ Here appears the rest of the clui_info struct built
+ from the kroutine's pane. All parameters for the
+ Pkroutine should have pane entries.
++^++++4++++++-H-+++++44-++++-H-+++++++++++++++++++++++++++

Output:
Returns:

Written By:
Date: Jun26, 1997

Modifications:

 */

void main(
int arge,
char **argv)

{

kform *pane; /* form tree representing *.pane file */
/* -main_variable_list */

/*
I II I I I I I II II II I I I I I I I I I I I I I I II I l-H-l l-H-l -H | -l-l -I H-H-H-i II I++
+ Copy the entire -main_variable_list section as is.
■it i i i ii I I i 11 I I i I 111 I I i I I 11 i i I I M I I I I I I I i I I I I 11 11 i i i I i i i i i

*/
int ret;
char *abstractCMD;
char *parJobBinDir;
char *nodeOutFile;
kfile *inDataFile;
kfile "outDataFile;
mpiStruct *mpiData;

/* Variables for kerror */
char *lib = NULL;
char *rtn = "YourProgram";

/* -main_variable_list_end */

khoros_initialize(argc, argv, "YOUR_TOOLBOX");
kexit_handlerCYourProgram_free_args, NULL);

/* -main_get_args_call */
kclui_Mtialize(PANEPArH, KGEN.KROUTINE,

107

"YOUR_TOOLBOX", "YourProgram",
YourProgram_usage_additions, YourProgram_get_args,
YourProgram_free_args);

/* -main_get_args_call_end */

/* -main_before_Jib_call */
/*

++++++++++4H-+++++-H-+++++-f^++++4^+++++4H-+++++H^+++++++++++
+ Copy the entire -main_before_lib_call section as is.

*/
I* Allocate memory */

abstractCMD = (char *) kmalloc(CMD_SIZE);
parJobBinDir = (char *) kmalloc(NAME_SIZE);
nodeOutFile = (char *) kmalloc(NAME_SIZE);
mpiData = (mpiStruct *) kmalloc(sizeof(mpiStruct));

/* Initialize file name(s) */
ksprintf (parJobBinDir,"%sBIN", kprog_get_toolboxO);
ksprintf (parJobBinDir, "%s", getenv(parJobBinDir));

/* Read database information from input */
inDataFile = kfopen(clui_info->inData_file, "r");
ret = kfread(mpiData, sizeof(mpiStruct), 1, inDataFile);
if(ret!=l)
{
kerror(lib, rtn, "Unable to get MPI data from input stream");
kexit(KEXIT_FAILURE);

}
kfclose(inDataFile);

/* -main_before_lib_call_end */

■/* -main_library_call */
/*

11 ii 111 i 11111 1111 111111 Mi111111iii i i 11 ii i 11 11 i i i i 111 11 ii
+ Copy the -main_library_call section. Some
+ modifications to customize for your application are
+ neccessary in mis section.
II 11 II i i i M II 111 II m H11 IIIIi11iiiii111111IIi i i i 111 i i i i i

-*/
/* Setup and call the abstract layer */

/*■ Use" ©localsCTatch" to tell the abstraction layer that it is to use
local scratch disk somewhere */

ksprintf (mpiData->outDataFileName, "@localscratch%s.out",
/* use only the name of the outData_file (not the path) */
strrcrir(clui_info->outPata_file, 7'));

ksprintf (abstractCMD, "%s/para_op.cmd",
mpiData->opEnv);

/* Required variables */

108

/*

*/

/*

*/

ksprintf (abstractCMD, "%s %s",
abstractCMD,
mpiData->jobName);

ksprintf (abstractCMD, "%& %s",
abstractCMD,
parJobBinDir);

+ In this section, the command line specific to your
+ Pkroutine is built This is a matter of appending
+ the name of the executable and its arguments to a
+ string variable.
++++-H-++++4++++++4H-+++++HH-+++++++++++++++++++++++++++++++

/* Add our own input variables */

/* Append the name of the parallel executable */
ksprintf (abstractCMD, "%s pkYourProgram",

abstractCMD);

/* No changes needed here */
ksprintf (abstractCMD, "%s -i %s",

abstractCMD,
mpiData->inDataFileName);

ksprintf (abstractCMD, "%s -o %s",
abstractCMD,
mpiData->outDataFileName);

/* This is an example of the arguments needed for the fft routine.
Append the arguments for your pkroutine in a similar fashion. */

ksprintf (abstractCMD, "%s -f %d",
abstractCMD,
cluiJunfo->FFTdir_toggle -1);

ksprintf (abstractCMD, "%s -t %d",
abstractCMD,
clui_info->trans_toggle -1);

■H I I I I I I I I I I M I M I I I I I I I I I I I I I M I I I I I I I I + H I I I I I I I 1 I I I I ++
+ No more changes needed after this point. Copy the
+ rest as is.
11111 M 111 1111 H 11 n ! n n 11 11 n n m 111 i i i 11 i 1111 [111 11 -i i

/* Reroute stdout to keep away those annoying "i"s in Cantata */
if (!mpiData->stdo)
ksprintf (abstractCMD, "%s > /dev/nuU",

abstractCMD);
I* Call the abstract program */

109

if (ksystem (abstractCMD) != 0)
{
kerror (lib, rtn, "Unable to execute command '%s"\ abstractCMD);
kexit(KEXIT_FAILURE);

}
/* -main_library_call_end */

/* -main_after_lib_call */
/*

++++4^++++-H-+++++4^+++++4^++++-H-+++++H^++++++++++++++++++

+ Copy the entire -main_after_lib_call section as is.

*/
/* Shove the database data down the output pipe */

kstrcpy(mpiData->inDataFileName,mpiData->outDataFileName);
/* out here is in for next */

kstrcpy(mpiData->outDataFileName,"");
mpiData->currentProcessNum++;
outDataFile = kfopen(clui_info->outData_file,"w");
ret = kfwrite(mpiData, sizeof(mpiStruct), 1, outDataFile);
if(ret!=l)
{
kerror(lib, rtn, "Unable to write MPI data to output stream");
kexit(KEXIT_FAILURE);

}

/* close up files and free memory */
kfree(parJobBinDir);
kfree(abstractCMD);
kfree(mpiData);
kfclose(outDataFile);

/* -main after lib call end */

kexit(KEXTTSUCCESS);
}

Routine Name: YourProgram_usage_additions

Purpose: Prints usage additions in YourProgram_usäge routine

Input: None

Output: None
Written By: ghostwriter -oname YourProgram

Date: Jun 26,1997
Modifications:

110

I
 - — - —*/
void YourProgram_usage_additions(void)
{

kfprintf(kstderr, "Appropriate message for YourProgram.");

/* -usage_additions */
/* -usage_additions_end */

}
/* -

Routine Name: YourProgram_free_args

Purpose: Frees CLUI struct allocated in YourProgram_get_args()

Input: None

Output: None
Written By: ghostwriter -oname YourProgram

Date: Jun 26, 1997
Modifications:

 */
/* ARGSUSED */
void
YourProgram_free_args(

kexit_status status,
kaddr client_data)

{

/* do the wild and free thing */
if(clui_info!=NULL)
{

Jkfiee_and_NUIJ^clui_info->inData_file);
kfree_and_NULL(clui_info->outData_file);
kfree_and_NULL(clui_info);

}

/* -free_handler_additions */
/* -free_handler_additions_end */
}

111

C.2. Template for the Pkroutine

#include "YourPkroutine.h"

/* — -

Routine Name: YourPkroutine

Purpose:

++-H-++++4++++++-H-+++++4+++++4H-+++++-t++++++4++++++++++++-H-
+ This routine is the top-level parallel executable.
+ For purposes of compatability with future versions of
+ Khoros, our suggestion is that this routine do
+ little more than parse arguments, open the input
+ object(s), and pass them to the lpkroutine.
+ Khoros' future plan for parallel executions from
+ Cantata is that the kroutine itself will be
+ executable on the remote computer.
I I M I I I I I I i i ++1 I I I I I I I I I I I I I I I ii+++++++++++++++++++++++++

Input: Input file name
Output file name

Output:
Returns:

Written By:
Date: May 25,1997

Modifications:

void main(int arge, char **argv)
{

/* Variables for kerror */
char *lib = "NONE";
char *rtn = "YourPkroutine";

/* Khoros variables */
kobject src_obj, dst_obj;

kdistjnit(&argc, &argv);
rank = kdist_rank();
size = kdist_sizeO;

printf("%d: Processing YourPkroutine from %d processors \n", rank, size);

112

/* Check for correct # of command line arguments */
if(argc != NARGS && rank = ROOT)

{
kerror(lib, rtn, "\nChecking args: arge = %d \n",argc);
printUsageO;
kexit(KEXIT_FAILURE);

}

/*

+ Following is an example of parsing the command line
+ for the parallel fft.
++++^++++HH-+++++4++++++HH-+++++++++++++++++++++++++++++++

*/
/* Process command line arguments */
/* Minimum required - input file and output file */
/* - fft_flag == forward or inverse */
/* - trans_flag == output transposed or original order */
for(i= l;i<argc;i++)

{
switch(argv[i][l])

{
case'i':
sprintf(inRleName,"%s",argv[++i]);
break;

case V:
sprintf(outFileName,"%s",argv[++i]);
break;

case'f:
fft_flag = atoi(argv[++i]);
if (ffi_flag != FORWARD && fft_flag != INVERSE)

{
if (rank == ROOT)

{
kerrorflib, rtn,

"NnChecking fft_flag: flag = %d \n", fft_flag);
printUsageO;

}
kexit(KEXrr_FAILURE);

}
break;

case't':
trans_flag = atoi(argv[++i]);
if (transj&ag != 0 &&trans_flag != 1)

{
if (rank = ROOT)

{
kerror(lib, rtn,

"NnChecking trans_flag: flag = %d \n", trans_flag);
printUsageO;

113

}
kexit(KEXIT_FAILURE);

}
break;

default:
if (rank == ROOT)

{
kerror(lib, rtn, "\nChecking input flags: incorrect\n");
printUsageO;

}
kexit(KEXIT_FAILURE);

}
}

/*

+ Here are the Khoros distributed data services calls
+ to open a KDF object whose data may later be
+ distributed. Normal kpds calls may also be used here
+ for objects which do not require distribution.
H I I I II -I +++-H-+++ I I I I I I I I ++++ M I I t I I + 1 I I I I I + 1-1 I I I I I I I I +++++

*/

/* Create distributed kobjects */
if ((src_obj = kpds_open_distributed_input_object(inHleName))

== KOBJECT_INVALID)

{
kerror(Ub, rtn, "Unable to open input object: %s\n", inFileName);
kexit(KEXTT_FAILURE);

}

if ((dst_obj = kpds_open_distributed_ou^put_object(outFileName))
= KOBJECTJNVALID)

{
kerror(lib, rtn, "Unable to open output object: %s\n", outFileName);
kexit(KEXIT_FAILURE);

}

/*
I I I I I II II I I M II I M I I I I I M I II I I I I I I I I I II I H -1 I I I I 1 I I I I I I I I I I
+ The call to your routine for distributing/processing
+ the data object.
■I M I I II I I I I I I I I I II II M I I II M I I I I I I I I I I

*/
i_error = Yourlpkroutine(src_obj, dst_obj,... other args as required...);
if(i_error)

{
kerror(lib, rtn, "\n***Failure in Yourlpkroutine %d***\n");
kexit(KEXTT_FAILURE);

}

114

/*

+ Close the data objects.
+HH-+H+++4H-4+++^+-H-++4^++++++^+^++++-H-+++++^

*/
kpds_close_distributed_object(src_obj);
kpds_close_distributed_object(dst_obj);

kexit(KEXIT_SUCCESS);

} /* end main */

C.3. Lpkroutine and Lroutine

The lpkroutine's function is to distribute data if necessary and pass the raw data to the lroutine. This may be
accomplished via calls to Khoros distributed data services, in which case the KDF object structure will be
available on all processors. Alternatively, the value segment data can be read in and distributed by MPI calls.
There are no templates for these levels as code will vary depending on the needs and implementation choices
of the developer. The pkcfft object in Para_tools is an example of one possible way to divide responsibilities.

Integration of already existing parallel code into the Khoros environment can follow much the same format
described here. A call to the existing code would be made from the lroutine level, passing data previously dis-
tributed and extracted from the KDF object.

115

9. Critical Design Review For
Advanced Signal Processing,

Integration of Data Compression into
RLSTAP

Marc Friedman
Maui High Performance Computing Center (MHPCC)

Joe Fogler
Brendan Bradley

Albuquerque High Performance Computing Center (AHPCC)

13 May, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

116

1 Introduction

The Advanced Signal Processing (ASP) program is a DARPA sponsored activity for studying
advanced processing techniques and technologies for next generation air early warning (AEW)
platforms.1 A key technology area for this activity is software tools and methodologies for col-
laborative algorithm development.

KhoraJ Research Incorporated (KRI), a spinoff company from the University of New Mexico Elec-
trical and Computer Engineering Department, has created a software integration and development
environment for information processing, data exploration and visualization called Khoros.2 Khoros
is a comprehensive software system with a rich set of tools usable by both end-users and application
developers. Included in these tools is a graphical programming application called Cantata which gives
users the ability to construct complex algorithms by interconnecting iconic representations, called
glyphs, of processing functions in a terminal window called a workspace, using mouse point-and-click
operations. Khoros has become a de-facto standard for collaborative algorithm development in the
Department of Defense automatic target recognition (ATR) community.

The Rome Laboratory Space-Time Adaptive Processing (RLSTAP) tool, utilizing Khoros and its
graphical programming environment Cantata, represents a state-of-the-art development environment
for clutter modeling and radar simulation for advanced early warning (AEW) applications, and has
found use by researchers working on Navy E-2C and the Air Force E-3A upgrades. Written initially
in Khoros version 1.0, RLSTAP is currenly being ported to the latest Khoros release, version 2.1, in
a separate development.

Signal processing algorithms required by AEW applications are computationally intensive and
utilize large data sets for experimentation and validation. These are driving a need for distributed
parallel processing resources such as those available at the Maui High Performance Computing
Center (MHPCC).

With large data sets for AEW applications archived at the MHPCC in Kihei, Hawaii, and
researchers located at diverse geographical locations throughout the country, there is a frequent
need to distribute data from the archive in Maui to distant researchers. The primary modality for
this data movement is the ethernet. The combination of large data sets and limited communication
bandwidth drive a need for data compression for such file transfers. Lossless compression is sought
to ensure that algorithm performance validation can be performed accurately. Two types of data
are in need of this compression - Radar Surveillance Technology Experimental Radar) RSTER-like
radar signals and synthetic aperture radar (SAR) data.

The purpose of this effort is to investigate lossless data compression strategies for RSTER-like
and SAR data, and develop a set of software applications for integration into the new RLSTAP
(compatible with Khoros 2.1) environment that perform efficient lossless compression and uncom-
pression. Versions of these applications will also be generated that operate standalone without the
Khoros environment.

2 Scope

2.1 System Overview

The vast majority of programs written for or supplied with the Khoros environment are kroutines.
These include all data processing programs such as image processing and signal processing routines.
Kroutines are fully usable from within the Cantata graphical programming environment, but gen-
erally do not display any graphics or images; they simply input data, process it, and output results.

1G. W. Titi, An Overview of the ARPA/NAVY Mountaintop Program, Proceedings IEEE Adaptive Antenna
Systems Symposium, (1994).

2See KRJ's website at http://www.khoral com/ for more details.

117

Kroutines may also be invoked without Cantata a.s ordinary applications under the Unix operat-
ing system, if desired. By convention, kroutines usually have names that begin with the letter k
when invoked from a Unix command line, although their names may appear slightly different when
represented graphicall}' (in an iconic form called a glyph) in a Cantata workspace.

It is convenient to partition the data compression routines into two categories - (1) routines that
apply to RSTER-like data, and (2) routines that apply to SAR data. This partitioning is opted
since it cannot be assumed that the data formats of RSTER-like and SAR data will be similar, nor
can it be assumed that the same data compression technique will work for both types!

2.1.1 Software routines for RSTER-like data

Files in the database of RSTER-like data are stored as Matlab version 4.2 matrix files.3

A high percentage of the space required to store RSTER-like data files is taken up by a set
of complex arrays given names of the form cpi# (Coherent Pulse Interval) where # is a cardinal
number. These are the items in the files upon which data compression will be focused. In subsequent
discussions, RSTER-like data files will be referred to simply as RSTER files, although it should be
noted that these files also contain small amounts of ancillary data in the form of arrays and scalars.

Routine name Description
rsterjcompress Standalone executable for compressing RSTER file
rster.uncompress Standalone executable for uncompressing RSTER file
RSTERcompress Khoros 2.1 executable for compressing RSTER file
RSTERuncompress Khoros 2.1 executable for uncompressing RSTER file

Each of the above routines acts as a driver for an associated library routine where the actual
compression and decompression work is performed.

2.1.2 Software routines for SAR data

SAR data is available from a number of sources in a variety of formats. However, for data distribution
purposes, it can be categorized into two domains: phase histories and formed images.

Phase histories represent SAR data in raw form which is typically stored on magnetic tape along
with platform flight data such as velocity, altitude, and sensor-to-ground geometry such as depression
angle and squint angle. Each phase history datum is complex-valued consisting of a real (I) and
imaginary (Q) component. Phase history data collected over a synthetic aperture represent range
and range-rate radar returns in a two-dimensional matrix of complex values obtained over a large
rectangular patch on the ground. The precision with which collected phase history data is initially
stored is often 16 bits or less for each real component and a similar number of bits for its imaginary
counterpart.

Image formation is the process by which phase histories are converted via FFTs and other
processes to so-called formed images. These are complex valued, but their magnitudes are displayable
and interpretable by the human eye. A great deal of effort must be spent in the image formation
process to ensure that the resulting data is properly focussed, correctly calibrated, and geometrically
accurate. For these and other reasons, most users find the formed image domain of greater use than
phase histories.

SAR data compatible with the RLSTAP environment will not be made available for this devleop-
ment. Therefore, unclassified SAR data from other sources will be sought, including rural clutter
scenes from the Advanced Detection Technology Sensor (ADTS), for data compression algorithm
development. However, there is no assurance that this data will be representative of actual SAR
data that may come into use beyond the timeframe and scope of this task. Given these assumptions,

3The file format for Matlab matrix files is described in the External Interface Guide supplied with Matlab software
distributions.

118

the routines listed in the following table will be developed. For convenience the formed image SAR
data files to be utilized in this development are referred to simply as SAR files.

routine name Description
sar_compress Standalone executable for compressing SAR file
sar.uncompress Standalone executable for uncompressing SAR. file
SARcompress Khoros 2.1 executable for compressing SAR. file
SARuncompress Khoros 2.1 executable for uncompressing SAR. file

2.2 Limitations

The data compression algorithms applied to this problem will be tuned to the statistics of data
identified for this task, and may not be broadly applicable to other types of data. Furthermore,
although the algorithms will be efficient and produce a substantial amount of compression, they
may not be optimal if, for example, better algorithms are available from other sources, but are
eliminated from consideration for proprietary reasons.

The RSTER data compress and uncompress routines will be developed using data intended for
RLSTAP and will be fully compatible with the RLSTAP Khoros 2.1 environment. However, the SAR
data compress and uncompress routines will be developed utilizing SAR data that is not intended
for the RLSTAP environment. There is a reasonable expectation that useful amounts of compression
will be achievable using other types of SAR data, but this cannot be assured and will not be tested.
Also, the file format of the non-RLSTAP SAR data to be used for development may be different
than that of the SAR data to be eventually used with RLSTAP. This means that some modification
to the low-level I/O routines used by these routines may be required in a future development beyond
the scope of the current task in order to achieve full compatibility with RLSTAP.

Since RLSTAP is currently supported under two operating environments, AIX on IBM RS6000
computers, and SunOS/Solaris on SUN SPARC computers, the file import, export, and data com-
pression routines will be designed for compatibility with the these platforms. The routines provided
may be compatible with additional platforms, but this will not be tested.

3 Reference Documents

Software routines to be written for use in Khoros will be developed using case tools built into Khoros.
These include craftsman which is used for the creation and management of collections of routines
called toolboxes, composer which is used to edit, manipulate, and compile existing software objects
(e.g. kroutines), and guise which is used to edit graphical user interface (GUI) objects (e.g. panes
and forms). These case tools are described in Chapters 2, 3, and 4, respectively, in the Khoros 2.1
Toolbox Programming Guide.

All file I/O performed by routines written in Khoros will be implemented using Khoros data
services routines. These are described in the Khoros 2.1 Data Services Guided

Documentation of the data compression tools will be provided in three forms - man pages, on-line
help, and a printed manual.

Man pages will serve as on-line documentation for both users and programmers, describing
functionality and usage of the various programs and utilities. Khoros man pages are accessable to
the user via the kman command which is similar in operation to the standard Unix man command.

On-line help is accessible by the user via a Help button on the graphical user interface pane that
can be displayed from within the Cantata graphical programming environment. The information
provided through the Help button is similar to that obtainable from man pages.

The printed manual will provide a hardcopy representation of the documentation and encap-
sulate much of the documentation into an integrated whole. The tools to support printed manual

119

documentation axe embedded within the Khoros imake system, which provides several macros for
including man pages, code segments, and function descriptions.

A description of documentation facilities within Khoros is provided in Chapter 6 of the Kftoros 2.1
Toolbox Programming Manual. Examples of documentation generated using these built-in facilities
can be found throughout that manual.

4 Design

4.1 Software Development Plan

Software development will be performed in two stages. In the first stage, software tools will be
developed for compressing, and uncompressing RSTER radar data. In the second stage, software
tools will be developed for compressing, and uncompressing SAR data.

The development of compression and uncompression routines for RSTER data will proceed in the
following steps: (1) data analysis, (2) algorithm experimentation and design, (3) baseline algorithm
selection, (4) coding of library routines for compression and uncompression, (5) coding of standalone
driver programs that call the library routines, (6) informal testing of the software for internal pur-
poses, (7) coding of Khoros-compatible versions of the driver programs, and (8) generation of man
pages, on-line help, and printed manual documentation.

The above steps will be repeated in the second stage of development for the compression and
uncompression of SAR data.

4.2 Data Description

4.2.1 RSTER Matrix Files

Each RSTER. matrix file is composed of one or more cpi matrices, and a number of ancillary arrays
and scalar values, all stored as a sequence of Matlab version 4.2 matrices. A Matlab version 4.2
matrix file contains one or more matrices each consisting of a 20-byte header, followed by a matrix
name string, followed by actual matrix data. Each matrix is stored sequentially and contiguously in
the file.

The Matlab header consists of five 4-byte signed integers that define, in order, (1) the matrix
type, (2) number of rows in the matrix, (3) number of columns in the matrix, (4) whether the matrix
is real or complex, and (5) the length of the matrix name including a NULL terminator character.
The matrix type encodes the precision and data type of the matrix data, the machine architecture
upon which the data was generated, and whether the matrix is sparse, numeric, or contains text.
All the matrices in this application are either numeric or textual.

All matrices are stored as type double (real or complex) data values in memory within Matlab.
However, to reduce storage requirements when large matrices are stored to files using the Matlab
save command, data is converted to a data type that requires fewer bytes-per-item where possible
according to an internal algorithm. For example, if all data within a real type double matrix are
integral values (i.e. representable as integers), and are bounded by the representable range of 32-bit
signed integers, the data is converted to and stored as 32-bit signed integers automatically when
saved. If all data are integral and bounded by the representable range of 16-bit signed integers, the
data is converted to and stored as 16-bit signed integers. Complex data, are similarly converted
where the real and imaginary components are tested independently against the bounds.

The cpi arrays, which constitute a high percentage of the storage requirements of a RSTER file,
are complex data with real and imaginary components each stored as signed integers. The Matlab
format places all the real components of a matrix first in the file followed by all its imaginary
components.

120

Each R.STER file contains at least one cpi# array where the first such array is given the name
cpil. Other matrices are present in the file that represent ancillary information. Many of these
ancillary matrices are optional and therefore may not be present in every R.STER file. The ancillary
matrices included in the following table are merely representative of a typical R.STER. file.

Matrix name Shape Type Integral Values
muxtype scalar real yes
trecord scalar real yes
wrecord scalar real yes
cpitype vector real yes
cpiidx vector real yes
scanidx vector real yes
npulses vector real yes
fxmit vector real no
pri vector real no
tpulse vector real no
elxmit vector real no
azxmit vector real no
cpitime matrix real no
cpil matrix cplx yes
cpi2 matrix cplx yes
cpi3 matrix cplx yes
cpi4 matrix cplx yes
cpi5 matrix cplx yes
flgRound scalar real yes
flgChopTrans scalar real yes
calflag scalar real yes
flgEqualize scalar real yes
flgCalibrate scalar real yes
nCPI scalar real yes
CurrFreq scalar real no
ant.tilt scalar real no
rster-alt scalar real no
rsterJat scalar real no
rsterJon scalar real no
rster_pow scalar real no
info matrix text n/a

The number of cpi arrays in the file is stored in the scalar variable nCPI. The vectors cpitype,
cpiidx, scanidx, npulses, fxmit, pri, tpulse, elxmit, and azxmit are all of length nCPI. The matrix
cpitime is composed of nCPI rows and six columns and contains time information stored as real
numeric values. The info array is textual and is composed of a number of rows of 80-column text
strings with each character represented as an ASCII code stored one per each matrix item.

4.2.2 Compressed RSTER Files

The format for compressed RSTER files will depend on the nature of the chosen data compression
algorithm, and may be opaque to the user. That is, the algorithm will encode the file to the extent
that the file contents may not be interpretable by any means other than to uncompress the file back to
its original form, a RSTER matrix file, using the routines rster.uncompress or its Khoros-compatible
equivalent RSTERuncompress.

121

4.2.3 SAR Data Files

Data will be sought in the form of rural SAR scenes from the ADTS sensor collection. The formed
image domain v-v polarized channel data will be extracted and converted to a Matlab 4.2-compatible
file format. This will permit reuse of the low-level I/O routines developed for the RSTER compress
and uncompress routines. Again, this data is for demonstration purposes only, and will not be
RLSTAP compatible. Additional I/O routines may be required beyond the timeframe and scope of
this task to support other SAR data formats.

4.2.4 SAR Compressed Files

The format for compressed SAR files will depend on the nature of the chosen data compression
algorithms, and may be opaque to the user. That is, the algorithm will encode the file to the extent
that the file contents may not be interpretable by any means other than to uncompress the file back
to its original form, a SAR. matrix file, using the routines sar.uncompress or its Khoros-compatible
equivalent SA Runcompress.

4.3 Modules

The software modules for compressing, and uncompressing data files are described in the following
sections. The standalone routines are described first, followed by the Khoros-compatible versions of
the same.

4.3.1 rster.compress

Purpose:
The purpose of the rster.compress standalone application is to input a RSTER Matlab file,

compress the data in the file, and output the resulting RSTER. file in compressed form.
Process:

rster.compress is a driver program that opens the input RSTER Matlab file for reading and the
output file for writing using the C-language system routines fopen and /close.

The input and output file descriptors are then passed to the Irster.compress library routine where
the actual read-compress-write operations take place.

The data compression algorithm is executed on each cpi array and the results are written to the
output object. Selected attributes from the input file are also copied to the output file, and the
procedure completes.

Details of the compressed RSTER file format are dependent upon the data compression algorithm
used. The routines rster-uncompress and its Khoros-compatible equivalent RSTERuncompress will
be capable of reading and uncompressing this file format to produce standard RSTER Matlab files.
Interfaces:

The rster.compress routine will utilize command line interface code that mimics a subset of the
command line user interface (CLUI) facilities built into Khoros. However, only those command line
arguments and features described here will be supported.

Command line arguments specific to the rster.compress routine are as follows:

Argument Type Description
-1 str
-o str
-U boolean

input RSTER matrix file
output compressed RSTER file
request usage (Khoros style)

Variable definitions:
The rster.compress routine utilizes the variables src, and dest.

122

The variable src, of type FILE *, is a. pointer to a structure returned by a call to fopen, and is
used to access the input file.

The variable dest, of type FILE *, is a pointer to a structure returned by'a call to fopen, and is
used to access the output file.
Routines called by rster_compress:

The Irster.compress library routine is opaque from command line execution of the rster^compress
routine. Its formal parameters are as follows:

Argument Type Description
src FILE * Input file descriptor
dest FILE * Output file descriptor

Other library routines are called from Irster.compress and are described in later subsections. The
names of these routines are

fget_next„matrix

fput_next„matrix

free_matrix

4.3.2 rster_uncompress

Purpose:
The purpose of the rster.uncompress standalone application is to input a compressed RSTER

file, uncompress the data in the file, and output the result as a standard RSTER Matlab file.
Process:

rster.uncompress is a driver program that opens the compressed input file for reading and the
output RSTER. Matlab file for writing using the C-language system routines fopen and /close.

The input and output file descriptors are then passed to the Irster.uncompress library routine
where the actual read-uncompress-write operations take place.

The data uncompression algorithm is executed on each cpi array and the results are written to
the output object. Selected attributes from the input file are also copied to the output file, and the
procedure completes. The resulting file is a standard RSTER Matlab file.
Interfaces:

The rster.uncompress routine will utilize command line interface code that mimics a subset of
the command line user interface (CLUI) facilities built into Khoros. However, only those command
line arguments and features described here will be supported.

Command line arguments specific to the rster.uncompress routine are as follows:

Argument Type Description
-i str input compressed RSTER file
-o str output RSTER matrix file
-U boolean request usage (Khoros style)

Variable definitions:
The rster.uncompress routine utilizes the variables src, and dest.
The variable src, of type FILE *, is a pointer to a structure returned by a call to fopen, and is

used to access the input file.
The variable dest, of type FILE *, is a pointer to a structure returned by a call to fopen, and is

used to access the output file.
Routines called by rster.uncompress:

The Irster.uncompress libary routine is opaque from command line execution of the rster.uncompress
routine. Its formal parameters are as follows:

123

Argument Type Description
src FILE * Input file descriptor
dest FILE * Output file descriptor

Other library routines are called from Irster-uncompress and are described in later subsections.
The names of these routines are

fget_next_matrix
fput_next_raatrix
free_matrix

4.3.3 fget_next_matrix

Purpose:
The library routine fgeLnexLmatrix mimics the functionality of the Matlab script matGet-

NextMatrix. That is, it reads the matrix at the current file position in an opened Matlab file
into memory.
Process:

The routine fgeLnexLmatrix uses the standard C-language file I/O routine fread to read in the
header, matrix name, and data from a matrix into memory, and returns a pointer to the matrix
structure.
Interfaces and variable definitions:

Formal parameters for the fgeLnexLmatrix routine are given in the following table:

Argument Type Description
fd FILE * Input file descriptor

The routine fgeLnexLmatrix returns a pointer to a structure of type matrix which is defined as
follows:

typedef struct „matrix {
char name[20]; /* matrix name */
int mmach; /* machine type */
int dtype; /* data type */
int mtype; /* matrix type */
int m; /* row dimension */
int n; /* col dimension */
void *pr; /* pointer to real part */
void *pi; /* pointer to imag part */

Machine type, data type, and matrix type defines associated with the matrix structure are:

/* data types */
#define DTYPEJJNKNOWN -1
#define DTYPE.DOUBLE 0
#define DTYPE_FLOAT 1
#define DTYPE.INT 2
#define DTYPE.SHORT 3
#define DTYPE.USHORT 4
«define DTYPE_UBYTE 5

/.* special type used for compression */.
»define DTYPE_INT3 6

124

/* matrix types */
«define MTYPE_UNKNOWN -1

«define MTYPE_REAL 0

«define MTYPE_TEXT 1
«define MTYPE_SPARSE 2

«define MTYPE.COMPLEX 3

/* machine types */
«define MMACH_UNKNOWN -1

«define MMACH_LITTLE_ENDIAN 0

«define MMACH_BIG_ENDIAN 1

Other routines called:

f read

4.3.4 fput_next_matrix

Purpose:
The library routine fpuLnexLmatrix mimics the functionality of the Matlab script matPutMatrix.

That is, it writes a matrix from memory beginning at the current file position in an opened Matlab-
format file.
Process:

The routine fpuLnexLmatrix uses the standard C-language file I/O routine /write to write out
the header, matrix name, and data from a matrix in memory.
Interfaces and variable definitions:

Formal parameters for the fpuLnexLmatrix routine are given in the following table:

Argument Type Description
mat matrix * Pointer to matrix struct
fd FILE * Output file descriptor

The routine fpuLnexLmatrix returns a type integer status value which is TRUE (1) if successful,
or FALSE (0) if an error occurred.
Other routines called:

fwrite

4.3.5 free_matrix

Purpose:
The library routine free-matrix deallocates the memory associated with the data buffers and

structure of a matrix.
Process:

The routine free-matrix frees the memory associated with the data buffers and matrix structure.
If any of these pointers are NULL, no action is taken to free that associated pointer.
Interfaces and variable definitions:

Formal parameters for the free-matrix routine are given in the following table:

Argument Type Description
mat matrix * Pointer to matrix struct

125

The routine free.matrix returns void.
Other routines called:

free

4.3.6 RSTERcompress

Purpose:
The purpose of the Khoros kroutine RSTERcompress is to input a RSTER Matlab file, compress

the data in the file, and output a compressed RSTER file.
Process:

RSTERcompress is a driver program that opens the input Matlab file for reading and the output
file for writing.

The input and output file descriptors are then passed to the IRSTERcompress library routine
where the actual read-compress-write operations take place.

The data compression algorithm is executed on each cpi array and the results are written to the
output object. Selected attributes from the input file are also copied to the output file, and the
procedure completes.

Details of the compressed RSTER file format are dependent upon the data compression algorithm
used. All that can be specified at this time is that the routine RSTERuncompress will be capable
of reading the file and converting it back to an uncompressed RSTER Matlab file.
Interfaces:

The RSTERcompress kroutine utilizes the command line user interface (CLUI) facilities built
into Khoros and detailed in the Khoros 2.1 Toolbox Programming Guide.

Command line arguments specific to the RSTERcompress routine are as follows:

Argument Type Description
-i infile input data object
-o outfile Compressed output file object

Variable definitions:
The rster.compress routine utilizes the variables src, and dest.
The variable src, of type kobject, is a pointer to a structure returned by a call to kpds-open-input-object,

and is used by Khoros data services routines to access the input object.
The variable dest, of type kobject, is a pointer to a structure returned by a call to kpds-open-OutpuLobject,

and is used by Khoros data services routines to access the output object.
Routines called by RSTERcompress:

The IRSTERcompress libary routine is opaque from command line execution of the RSTERcom-
press kroutine. Its formal parameters are as follows:

Argument Type Description
src kobject Input object descriptor
dest kobject Output object descriptor

Other library routines are called from IRSTERcompress and are described in later subsections.
The names of these routines are

lget_next_matrix
lput_next„matrix
lfree_matrix

126

4.3.7 RSTERuncompress

Purpose:
The purpose of RSTERuncompress is to input a compressed RSTER. file, uncompress the data

in the file, and output a Matlab RSTER file.
Process:

RSTERuncompress is a driver program that opens the compressed input file for reading and the
output RSTER file for writing using the Khoros data services routines kpds-openJnput.object and
kpds.open.output.object, respectively.

The input and output file descriptors are then passed to the IRSTERuncompress library routine
where the actual rea.d-uncompress-write operations take place.

The data uncompression algorithm is executed on each cpi array and the results are written to
the output object. Selected attributes from the input file are also copied to the output file, and the
procedure completes.

Details of the compressed RSTER file format are dependent upon the actual data compression
algorithm used. However, regardless of the compression algorithm utilized, the kroutine RSTERun-
compress and the standalone version rster.uncompress will be capable of reading compressed files
generated by the kroutine RSTERcompress.
Interfaces:

The RSTERuncompress routine utilizes the command line user interface (CLUI) facilities built
into Khoros and detailed in the Khoros 2.1 Toolbox Programming Guide. Included in this inter-
face is the automatic generation of usage activated by the -U command line option. Since this is
automatically generated, it is implied and therefore not listed among the command line arguments.

Command line arguments specific to the RSTERuncompress routine are as follows:

Argument Type Description
-i infile Compressed input data object
-o outfile output file object

Variable definitions:
The RSTERuncompress kroutine utilizes the variables src, and dest.
The variable src, of type kobject, is a pointer to a structure returned by a call to kpds-open.input.object,

and is used by Khoros data services routines to access the input object.
The variable dest, of type kobject, is a pointer to a structure returned by a call to kpds.open.outpuLobject,

and is used by Khoros data services routines to access the output object.
Routines called by RSTERuncompress:

The IRSTERuncompress libary routine is opaque from command line execution of the RSTERun-
compress routine. Its formal parameters are as follows:

Argument Type Description
src kobject Input object descriptor
dest kobject Output object descriptor

Other library routines are called from Irster.uncompress and are described in later subsections.
The names of these routines are

Iget_next„matrix
lput_next„matrix
lfree_matrix

127

4.3.8 lget_next_matrix

Purpose:
The library routine IgeLnexLmatrix mimics the functionality of the Matlab script matGet-

NextMatrix. That is, it reads the matrix at the current file position in an opened Matlab file
into memory. It is virtually identical to the standalone library routine fgeLnexLmatrix but uses the
Khoros versions of system library routines.
Process:

The routine IgeLnexLmatrix uses the Khoros file I/O routine kfread to read in the header, matrix
name, and data from a. matrix into memory, and returns a pointer to the matrix structure.
Interfaces and variable definitions:

Formal parameters for the IgeLnexLmatrix routine are given in the following table:

Argument Type Description
fd kfile * Input file descriptor

The routine IgeLnexLmatrix returns a pointer to a structure of type matrix which was defined
previously in the subsection detailing the routine IgeLnexLmatrix.
Other routines called:

kfread

4.3.9 lput_next_matrix

Purpose:
The library routine IpuLnexLmatrix mimics the functionality of the Matlab script matPutMatrix.

That is, it writes a matrix from memory beginning at the current file position in an opened Matlab-
format file. It is virtually identical in function to the standalone library routine fpuLnexLmatrix
but utilizes Khoros versions of system I/O library routines.
Process:

The routine IpuLnexLmatrix uses the Khoros file I/O routine kfwrite to write out the header,
matrix name, and data from a matrix in memory.
Interfaces and variable definitions:

Formal parameters for the IpuLnexLmatrix routine are given in the following table:

Argument Type Description
mat matrix * Pointer to matrix struct
fd kfile * Output file descriptor

The routine IpuLnexLmatrix returns a type integer status value which is TRUE (1) if successful,
or FALSE (0) if an error occurred.
Other routines called:

kfwrite

4.3.10 lfree_matrix

Purpose:
The library routine Ifree^matrix deallocates the memory associated with the data buffers and

structure of a matrix. It is virtually identical to the standalone version fret-matrix except that the
Khoros version of free, (kfree) is utilized to deallocate memory.
Process:

The routine lfree.matrix frees the memory associated with the data buffers and matrix structure.
If any of these pointers are NULL, no action is taken to free that associated pointer.

128

Interfaces and variable definitions:
Formal parameters for the Ifree.matrix routine are given in the following table:

Argument Type Description
mat matrix * Pointer to matrix struct

The routine Ifree.matrix returns void.
Other routines called:

kf ree

4.3.11 sar_compress

Purpose:

The purpose of the sar.compress standalone application is to input a SAR file, compress the data
in the file, and output the resulting SAR file in compressed form. The file format of the input SAR
file will be Matlab 4.2. This will permit the reuse of file i/o routines developed for reading RSTER
files. The I/O aspects of sar-compress may need to be modified at a later time to accomodate the
actual SAR data to be eventually used in the RLSTAP environment. However, such modifications
are beyond the scope of the current task.

Two compression algorithms will be supported, arithmetic coding and Huffman coding. A com-
mand line option will be utilized to select the desired algorithm.
Process:

sar.comprtss is a driver program that opens the input SAR Matlab file for reading and the output
file for writing using the C-language system routines fopen and fclose.

The input and output file descriptors and algorithm option flag are then passed to the Isar.compress
library routine where the actual read-compress-write operations take place.

The data compression algorithm is executed on the sar data array and the results are written to
the output object. Selected attributes from the input file are also copied to the output file, and the
procedure completes.

Details of the compressed SAR file format are dependent upon the data compression algorithm
used. The routines sar-uncompress and its Khoros-compatible equivalent SARuncompress will be
capable of reading and uncompressing this file format to produce a Matlab 4.2 compatible file.
Interfaces:

The sar-compress routine will utilize command line interface code that mimics a subset of the
command line user interface (CLUI) facilities built into Khoros. However, only those command line
arguments and features described here will be supported.

Command line arguments specific to the rster.compress routine are as follows:

Argument Type Description
-i str input SAR matrix file
-t int (1) Huffman, (2) Arithmetic
-o str output compressed SAR file
-U boolean request usage (Khoros style)

Variable definitions:
The sar-compress routine utilizes the variables src, dest, and atype.
The variable src, of type FILE * is a pointer to a structure returned by a call to fopen, and is

used to access the input file.
The variable dest, of type FILE * is a pointer to a structure returned by a call to fopen, and is

used to access the output file.
The variable atype, of type integer,. determines which algorithm type to utilize. If atype is 1,

Huffman coding is to be used. If atype is 2, Arithmetic coding is to be used.

129

Routines called by sar_compress:
The Isar.compress library routine is opaque from command line execution of the sar.compress

routine. Its formal parameters are as follows:

Argument Type Description
src FILE * Input file descriptor
a.type integer (1) Huffman, (2) Arithmetic
dest FILE * Output file descriptor

A number of library routines are called from bar.compress and are described in other subsections.
The names of these routines are

huffman_encode

arith_encode -

fget_next„matrix

fput_next_matrix

free_matrix

4.3.12 sar-uncompress

Purpose:
The purpose of the sar.uncompress standalone application is to input a compressed SAR file,

uncompress the data in the file, and output the result as a Matlab-compatible SAR file.
Process:

sar.uncompress is a driver program that opens the compressed input file for reading and then
outputs a SAR Matlab file for writing using the C-language system routines fopen and fclose.

The input and output file descriptors are then passed to the Irster.uncompress library routine
where the actual read-uncompress-write operations take place.

The data uncompression algorithm is executed on the sar data array and the results are written
to the output object. Selected attributes from the input file are also copied to the output file, and
the procedure completes. The resulting file is a Matlab 4.2 compatible SAR file.
Interfaces:

The sar.uncompress routine will utilize command line interface code that mimics a subset of the
command line user interface (CLUI) facilities built into Khoros. However, only those command line
arguments and features described here will be supported.

Command line arguments specific to the sar.uncompress routine are as follows:

Argument Type Description
-1 str
-o str
-U boolean

input compressed SAR file
output SAR matrix file
report usage (Khoros style)

Variable definitions:
The sar.uncompress routine utilizes the variables src, and dest.
The variable src, of type FILE *, is a pointer to a structure returned by a call to fopen, and is

used to access the input file.
The variable dest, of type FILE *, is a pointer to a structure returned by a call to fopen, and is

used to access the output file.
Routines called by sar.uncompress:

The Isar.uncompress libary routine is opaque from command line execution of the sar.xmcompress
routine. Its formal parameters are as follows:

130

Argument Type Description
src
dest

FILE * Input file descriptor
FILE * Output file descriptor

A number of library routines are called from Isar.uncompress and are described in other subsec-
tions. The names of these routines are

huffman_decode
arith_decode

fget_next„matrix

fput_next„matrix

free_matrix

4.3.13 huffman_encode

Purpose:
The library routine Huffman-encode performs data compression using a Huffman coding algo-

rithm.
Process:

The routine huffman.encode accesses the data using pointers in the memory matrix structs that
are passed to the routine. The memory matrix struct type was described in a previous section.
Interfaces and variable definitions:

Formal parameters for the huffman.encode routine are given in the following table:

Argument Type Description
imat matrix * Pointer to input matrix struct
omat matrix * Pointer to output matrix struct

The routine huffman.encode returns a type integer status value which is TRUE (1) if successful,
or FALSE (0) if an error occurred.
Other routines called:

none

4.3.14 huffman_decode

Purpose:
The library routine huffman-decode decompresses data that was previously compressed using the

Huffman coding algorithm utilized in the routine huffman.encode.
Process:

The routine huffman-decode accesses the data using pointers elements of the memory matrix
structs that are passed to the routine.
Interfaces and variable definitions:

Formal parameters for the huffman-decode routine are given in the following table:

Argument Type Description
imat matrix .* Pointer to input matrix struct
omat matrix * Pointer to output matrix struct

The routine huffman-decode returns a type integer status value which is TRUE (1) if successful,
or FALSE (0) if an error occurred.
Other routines called:

none

131

4.3.15 arith_encode

Purpose:
The library routine arith.encode performs data compression using an arithmetic coding algorithm.

Process:
The routine arith^encodc accesses the data using pointers in the memory matrix structs that are

passed to the routine. The memory matrix struct type was described in a previous section.
Interfaces and variable definitions:

Formal parameters for the arith-encode routine are given in the following table:

Argument Type Description
imat matrix * Pointer to input matrix struct
omat matrix * Pointer to output matrix struct

The routine arith.encode returns a type integer status value which is TRUE (1) if successful, or
FALSE (0) if an error occurred.
Other routines called:

4.3.16 arith_decode

Purpose:
The library routine aritk-decode decompresses data that was previously compressed using the

arithmetic coding algorithm utilized in the routine arith-encode.
Process:

The routine arith.decode accesses the data using pointers elements of the memory matrix structs
that are passed to the routine.
Interfaces and variable definitions:

Formal parameters for the arith-decode routine are given in the following table:

Argument Type Description
imat matrix * Pointer to input matrix struct
omat matrix * Pointer to output matrix struct

The routine arith.decode returns a type integer status value which is TRUE (1) if successful, or
FALSE (0) if an error occurred.
Other routines called:

5 Test Plan

Two types of tests will be performed on the various software modules, (1) validation test suites, and
(2) acceptance tests.

5.1 Validation Test Suites

Validation test suites will be created for each kroutine using the Khoros non-interactive test suite
generation infrastructure, described in Chapter 7 of the Khoros Toolbox Programming Guide.

The purpose of these test suites is to provide a reproducible, nan-interactive method of algorithm
verification that helps guarantee the integrity, robustness, and portability of the code. This is
particularly useful when the kroutines are recompiled on a new machine architecture.

132

A test shell script will be written for each kroutine based upon a test script template provided
with the Khoros software distribution.

Small data files will be generated within or loaded from these shell scripts to provide input file
stimuli for the tests. There will be no dependencies of these test scripts on other toolboxes except
those that are part of the Khoros test suite development infrastructure.

These shell scripts will be located in a testsuites subdirectory to be placed under the data
compression toolbox director)'.

The standalone C-language versions of these kroutines will be developed first and then ported to
the Khoros environment. A number of informal tests will be performed on the standalone versions
before they are ported to Khoros. Since they will be fully tested under the Khoros environment,
the validation test suites developed under the Khoros environment will not be duplicated for the
standalone versions upon which they are derived.

5.2 Acceptance Tests

The following tests will be performed using the small number of RSTER data files that have been
been made available to us for development testing:

(1) A Cantata workspace will be constructed that reads and compresses the RSTER data
using the RSTERcompress kroutine, then uncompresses the just-compressed RSTER data using
the RSTERuncompress kroutine. Both the original uncompressed data and the compressed-then-
uncompressed data will be compared to demonstrate that no information has been changed or lost
in the compress-decompress process. The sizes of the original RSTER files and their compressed ver-
sions will also be compared to demonstrate in an average sense across all the files, that compression
has occurred.

(2) The standalone versions of the RSTER. compress and uncompress routines will be demon-
strated by command line execution to show that no information is changed or lost in the compress-
decompress process, and by examination of file sizes, that compression has occurred in an average
sense across all the files.

The following tests will be performed using a small number of SAR files obtained from the ADTS
sensor rural clutter collection, and converted to Matlab-compatible file format:

(1) A Cantata workspace will be constructed that reads and compresses the SAR data using the
S ARcompress kroutine, then uncompresses the just-compressed SAR data using the S ARuncompress
kroutine. Both the original uncompressed data and the compressed-then-uncompressed data will be
compared to demonstrate that no information has been changed or lost in the compress-decompress
process. This will be demonstrated for both the Huffman and arithmetic coding algorithms. The
sizes of the original SAR files and their compressed versions will also be compared to demonstrate
in an average sense across all the files, that compression has occurred.

(2) The standalone versions of the SAR compress and uncompress routines will be demon-
strated by command line execution to show that no information is changed or lost in the compress-
decompress process, and by examination of file sizes, that compression has occurred in an average
sense across all the files.

133

10. RLSTAP_HPC Data Compression Effort

Brendan Bradley
Albuquerque High Performance Computing Center (AHPCC)

30 September, 1997

To Support Contract Statement of Work Subtäsk 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

134

Outline

Introduction

Background

- Compression algorithms

- Available data

System design

- Algorithm selection

- Software tools

Compression results

- RSTER data compression

- SAR data compression

Objectives

Add lossless data compression capabilities to the RLSTAP software
environment for Air Early Warning (AEW) radar simulation.

Provide the ability to efficiently compress two types of data

- RSTER radar data

- Formed SAR images

Provide standalone versions of the data compression software tools

Challenges

Data compression must be lossless which eliminates a number of
techniques capable of achieving much higher levels of compression

Both RSTER data and SAR data are random and nondeterminstic with
fairly broad probability densities

Utilize non-proprietary techniques and software that can be
incorporated into the RLSTAP environment without constraint

135

Outline

Introduction

Background

- Compression algorithms

- Available data

System design

- Algorithm selection

- Software tools

Compression results

- RSTER data compression

- SAR data compression

Objectives

Add lossless data compression capabilities to the RLSTAP software
environment for Air Early Warning (AEW) radar simulation.

Provide the ability to efficiently compress two types of data

- RSTER radar data

- Formed SAR images

Provide standalone versions of the data compression software tools

Challenges

Data compression must be lossless which eliminates a number of
techniques capable of achieving much higher levels of compression

Both RSTER data and SAR data are random and nondeterminstic with
fairly broad probability densities

Utilize non-proprietary techniques and software that can be
incorporated into the RLSTAP environment without constraint

136

 Outline

Introduction

Background
- Compression algorithms
- Available data

System design
- Algorithm selection
- Software tools

Compression results
- RSTER data compression
- SAR data compression

 Overview of lossless compression techniques

Most lossless compression techniques fell into one of the
following categories:

• Statistical methods
idea: Estimate probabilities of symbols and assign

symbols with high probability to shorter codewords
example: Huffman coding

• Dictionary methods
idea: Replace "words" or fragments of words with an

index to an entry in a dictionary
example: Lempel-Ziv coding

Several lossless algorithm schemes were investigated

Arithmetic: • A class of coding schemes by which it is possible to
encode in non-integer bits. This allows us, in theory,
to code close to entropy

Huffman: • Works on same general principle as arithmetic
coding but codes are restricted to integer lengths

Lempel-Ziv: • These algorithms are, in essence, adapted dictionary
routines

GZIP: - A variant of LZ77 coding which uses an offset
pointer and length pointer to point to previously
occurring section of "text"

Compress: - A variant of LZ78 which is similarto LZ77 but
with restrictions placed on which substrings
may be referenced.

137

Additional algorithms that were investigated

Prediction by • Uses finite-context models of symbols which are
Patial then encoded by a statistical, usually arithmetic,

Matching: encoder

Dynamic • Based on a finite state machine. The coding is
Markov adaptive so that both probabilities and structure of

Compression: finite state machine changes as coding proceeds

Ad hoc • Ways to exploit unique characteristics of the data
schemes: and how it is archived - tricks

RSTER data

Complex data composed of integer real and imaginary parts each
representable in no more than 24-bits

Histograms of real and imaginary parts resemble Gaussian pdfs
although some skewness is observed

Data arranged in a three-dimensional cube with axes representing
range, pulse and elements (RPE)

Header information and data cube are stored as Matlab 4.2c -
compatible matrix file

- data cube is stored in a complex matrix

- each header attribute is stored in its own matrix

- data cube datatype in file either short integer or long integer

 SAR data

Customer data not available - utilized formed SAR images
of clutter from MSTAR-CD (public domain, non ITAR)

- rural and urban clutter

- h-h polarization

- 15 degree depression angle

MSTAR-CD data consists of textual "PHOENDC" header
followed by binary "C4PL" header followed by 16-bit
scaled magnitude values, followed by 12-bit scaled phase
values stored in 16-bits.

Data converted to 16-bit I and 16-bit Q values for data
compression experiments

138

Outline

Introduction

Background

- Compression algorithms

- Available data

System design

- Algorithm selection

- Software tools

Compression results

- RSTER data compression

- SAR data compression

Initial algorithm downselection

SAR data was not available early on in the development, so the
initial focus of the work was on RSTER data

After an initial examination of the RSTER data set we opted for

arithmetic: optimal compression in the sense of entropy

Huffman: very robust, relies on probabilities only, not ordering

The work of other researchers indicated that these schemes would
also work well for SAR data in the formed complex domain

Further investigation of the RSTER data revealed a storage
inefficiency in the file format. This led to the development of an
ad hoc technique applicable only to the RSTER database in its
current form.

Ad hoc compression of RSTER matrix files

Most of the storage space of RSTER files are due to the RPE data
cubes rather than ancillary attributes

When such data are stored to a file, Matlab recognizes that the data
values are integral and attempts to store each datum as an integer
whose precision is large enough to hold the array extrema. Thus, if
only one value in the array exceeds the representable range of a two-
byte integer, the storage type for the whole array defaults to four-
byte integer.

Our algorithm places entries of the data cubes that have values out of
range (either 1 or 3 byte) to an ancillary array and flags the
offending entries with a reserved value within range. This permits a
high percentage of the data to be stored in short integers

Decompression converts data to a larger integer type and replaces
the flagged entries with their proper values from the ancillary array.

139

Availability of compression algorithms and software

The ad hoc technique was developed in-house and software tools
were constructed to compress and uncompress RSTER data

Source code was obtained for the Huffman compression scheme
which has been incorporated into software tools to compress and
uncompress data

An extensive search was conducted for public-domain arithmetic
coding software but all were subject to severe copyright restrictions.

An algorithm alternative, GZIP, was sought as a backup.

Recently, an arithmetic coding package was located at Sandia Labs
which is tuned to compress 16-bit I and Q SAR data. We were given
an executable binary version with which we have been able to
conduct experiments. We are still waiting to hear about the
availability of source code.

Data compression software tools (Khoros kroutines)

RSTERcompress — Utilizes the ad hoc technique to reduce the size
of RSTER files

RSTERuncompress - Restores RSTER files to their original state

SARcompress - Uses Huffman algorithm to compress SAR data
(can also be applied to RSTER data)

SARuncompress - Restores Huffman encoded data to original state

GZIPcompress - Uses GZIP algorithm to compress data

GZIPuncompress _ Restores GZIP encoded data to original state

 Outline

Introduction

Background

- Compression algorithms

- Available data

System design

- Algorithm selection

- Software tools

Compression results
RSTER data compression

SAR data compression

140

Results of data compression on available RSTER data

(lower is better)

64.1%

iv-'i*it^rBr:

92.4%

RSTERcompress Huffman Arithmetic

58.5%

GZIP RSTERcompress
followed by

Huffman

Results of data compression on available SAR data

(lower is better)

43.5%

GZIP Huffman Arithmetic

Example RSTER data compression workspace
M . CwitiU: VtaiHrf Proywwnrioq Lwqtuqt orOxKHOROSSytUa ■■■-" wij

' IA W*M.MCT«.V. ^.wfcaiTi j**^. !«**«»*, .v^^jk*«»»'-««^.*^-*«.»..- -iiii»' ''-irf^i*.*-... »ii'itaiU'w.;»,

wmsmmm
IMMIHI^VM MMM BKSWBBIHRSPÄPBSI

:sss

! •'£?, ";EF 11 5T.3
«£J-i". "

1!!■ .■f£uÄX_'.Vft_u~an^»n. i «ml

'-•>••'-■--- : • [' : • ■•.■

' 1 -- _- --
lll||lll III |l III IH

I "^ ^"" -r/VW ~* • -^~:. •■.•■,;.--,i •■ f

 ' ■ ■'"■ ■■■' '■ : i

141

Example SAR data compression workspace
Cantata: Vlsuil Programming Language for the KHOROS System

|:»ä^m^^f&i^^^^wmi
^tff,°tifflnfaTi!f;°

wmss^^BBB^^mmmmm

Summary

• Lossless data compression algorithms were investigated for RSTER
and SAR data

• Both statistical and dictionary based lossless schemes proved useful

• The best single-approach compression results for RSTER data in its
current storage format was achieved using an ad hoc technique. This
technique followed by Huffman coding produced the best overall
results

• The best overall compression results for SAR data were achieved
using an arithmetic coding scheme. GZIP and Huffman also did quite
well

• Software tools were developed that utilize Huffman, GZIP and the ad
hoc algorithm. Arithmetic coding software not yet available.

142

11. Compression Manual

Brendan Bradley
Albuquerque High Performance Computing Center (AHPCC)

30 October, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

143

Introduction to the Khoros RSTER Routines

A. Overview

With large sets of RSTER (Radar Surveillance Technology Experimental Radar) -like data archived at
MHPCC in Kihei, Hawaii and researchers located at diverse geographic locations throughout the country,
there is a frequent need to distribute data from the archive in Maui to distant researchers. The primary modal-
ity for this details the ethernet. The combination of large data sets and limited communication bandwidth
drive a need for data compression for such file transfers. Lossless compression is required to ensure that algo-
rithm performance validation can be performed accurately. This toolbox is designed for this purpose.

Each RSTER matrix file is composed of one or more "cpi" matrices, and a number of ancillary arrays and
scalar values, all stored as a sequence of Matlab version 4.2 matrices. A Matlab version 4.2 matrix file con-
tains one or more matrices each consisting of a 20-byte header, followed by a matrix name string, followed by
actual matrix data. Each matrix is stored sequentially and contiguously in the file.

The Matlab header consists of five 4-byte signed integers that define, in order, (1) the matrix type, (2) number
of rows in the matrix, (3) number of columns in the matrix, (4) whether the matrix is real or complex, and (5)
the length of the matrix name including a NULL terminator character. The matrix type encodes the precision
and the data type of the matrix, the machine architecture upon which the data was generated, and whether the
matrix is sparse, numeric, or contains text All matrices in a RSTER matrix file are either numeric or textual.

All matrices are stored as type double (real or complex) data values in memory within Matlab. However, to
reduce storage requirements when large matrices are stored to files using the Matlab "save" command, data is
converted to a data type that requires fewer bytes-per-item where possible according to an internal algorithm.
For example, if all data within a real type double matrix are integral values (i.e. representable as integers), and
are bounded by the representable range of 32-bit signed integers, the data is converted to and stored as 32-bit
signed integers automatically when saved If all data are integral and bounded by the representable range of
16-bit signed integers, the data is converted to and stored as 16-bit signed integers. Complex data, are simi-
larly converted when real and imaginary components are tested independently against the bounds.

The "cpi" arrays, which constitute a high percentage of the storage requirements of a RSTER file, are complex
data with real and imaginary components stored as signed integers. The Matlab format places all the real com-
ponents of a matrix first in the file followed by all its imaginary components.

In most RSTER files the "cpi#" matrices are stored as 4-byte integers. When a high percentage of the data
within the "cpi#" matrices have values that fall within the range -<2*15)+l to (2*15)-1, that is, -32767 to
+32767, the data that fall within this range are stored as 2-byte integers, and the out-of-range data are stored
in ancillary arrays as 4-byte integers. This yields a compression factor that approaches 2:1. The Matlab "O"
variable in the "type MOPT" flag is used to describe the type of compression used, called "ctype", and is
given the value I to indicate the "cpi#" has been compressed to a 2-byte range with the out of range values
being sent to the matrix "i_cpi#" immediately following the 2-byte "cpi#".

When a low percentage of the data within the "cpi#" matrices have values that fall within the range -(2~15)+1
to (215)-1, but a high percentage of the data fall within the range -<2*23)+l to (2~23)-l. the data that fall
within this range are stored as 3-byte integers. If in "cpi#" there exists values out of the 3-byte range then

144

these are stored in the index array "i_cpi#" and ctype = 2. If no values are out of the 3-byte range then there is
no need for an index array and ctype = 4.

If a low percentage of the data within the "cpi#" matrices have values that fall within the range -(2*23)+l to
-(2*23)+l, or the "cpi#" matrices are not initially 4-byte integers, then no compression is performed, and input
file is simply copied to the output file without modification. If no compression is performed, then ctype = 0.

Upon decompression, Matrices in the input file having names of the form "cpi#" are singled out. These matri-
ces contain complex data types whose real and imaginary components are stored as either two-byte or three-
byte integers, depending on the mode of compression performed. Once it has been confirmed that the matrix
is a "cpi#" matrix then the "ctype" is extracted and the matrix is decompressed appropriately. For example if
ctype = 1 or 2 then the "i_cpi#" following is recombined with the "cpi#". If ctype = 0, then the matric is out-
put as is since no compression was performed in the first place.

Upon decompression the matrices in the files are bit by bit the same as the originals, i.e. the compression has
been lossless.

A.l. RSTERcompress — Compress RSTER data.

Object Information
Category: COMPRESSION Subcategory: utilities
Operator: RSTERcompress Object Type: kroutine
In Cantata: Yes

Description
The kroutine RSTERcompress inputs a RSTER Matlab file, compresses the data in the file, and outputs
a compressed RSTER file.

Command Line Arguments

Usage for RSTERcompress: Compress RSTER data.
% RSTERcompress

-i (infile) RSTER matrix input file name
-o (outfile) Compressed output file name

A.2. RSTERuncompress — Uncompress RSTER data.

Object Information
Category: COMPRESSION Subcategory: utilities
Operator: RSTERuncompress Object Type: kroutine
In Cantata: Yes

145

Description
The kroutine RSTERuncompress inputs a compressed RSTER file, uncompresses the data in the file,
and outputs a Matlab RSTER file.

Command Line Arguments

Usage for RSTERuncompress: Uncompress RSTER data.
% RSTERuncompress

-i (infile) compressed RSTER input data file
-o (outfile) Uncompressed RSTER output data file.

A.3. kmat2asc — Convert Matlab matrix data to Ascii.

Object Information
Category: COMPRESSION
Operator: Mat2Ascii
In Cantata: Yes

Subcategory: utilities
Object Type: kroutine

Description
The kroutine kmat2asc reads each matrix in a Matlab matrix file and converts each datum to ascii in
succession.

Command Line Arguments

Usage for kmat2asc: Convert Matlab matrix data to Ascii.
% kmat2asc

-i (infile) Matlab matrix input file

[-text] (flag) output ASCII text flag
[-o] (outfile) Ascii output file

(default = (none))

B. Object Manifest

COMPRESSION toolbox Object Manifest

Category
Subcategory

Operator Description Executable

COMPRESSION

utilities

Extract CPI Extract cp< array and place in value tegment kextractcpl
MaOAfcii Convert Matlab matrix data to Accli. kmat2asc

146

COMPRESSION toolbox Object Manifest

Category
Sub category

Operator Description Executable

RSTERcompress Compress RSTER data. RSTERcompress

RSTERuncompress Uncompress RSTER data. RSTERuncompres s

B.l. LRSTERcompressQ —perform data compression on matrix file

Synopsis
int IRSTERcompress(
kfile *fdi,
kfile *fdo)

Input Arguments
fdi

input file stream pointer
fdo

output file stream pointer

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This program inputs a Matlab version 4.x matrix file containing RSTER type data, compresses selected
matrices within the file, and writes each matrix to a second Madab version 4.x matrix file. If the Matlab
file contains data in a supported machine format, it is converted to the local machine format as needed.
Otherwise an error is reported.

Matrices in the input file having names of the form "cpi#", where "#" is a positive integer, are singled
out for compression. These matrices contain complex data whose real and imaginary components are
stored as integers. In each "cpi#" matrix, the real components are stored first, followed by all the imagi-
nary components.

In most RSTER files the "cpif" matrices are stored as 4-byte integers. When a high percentage of the
data within the "cpi#" matrices have values that fall within the range -(2~15)+1 to (215H, that is,
-32767 to +32767, the data that fall within this range are stored as 2-byte integers, and the out-of-range
data are stored in ancillary arrays as 4-byte integers. This yields a compression factor that approaches
2:1. The Matlab "O" variable in the "type MOPT" flag is used to describe the type of compression used,
called "ctype", and is given the value 1 to indicate the "cpi#" has been compressed to a 2-byte range
with the out of range values being sent to the matrix "LcpiF immediately following the 2-byte Mcpi#".

When a low percentage of the data within the "cpi#" matrices have values that fall within the range
-(2*15)+1 to (2A15)-1, but a high percentage of the data fall within the range -(2*23)+l to (2*23)-l, the

147

data that fall within this range are stored as 3-byte integers. If in "cpi#" there exists values out of the
3-byte range then these are stored in the index array "i_cpi#" and ctype = 2. If no values are out of the
3-byte range then there is no need for an index array and ctype = 4.

If a low percentage of the data within the "cpi#" matrices have values that fall within the range
-(2~23)+l to -(2~23)+l, or the "cpi#" matrices are not initially 4-byte integers, then no compression is
performed, and input file is simply copied to the output file without modification. If no compression is
performed, then ctype = 0.

The following lists the possible compression modes:

0 CTYPE_NORMAL no compression 1 CTYPE_INT2I 2-byte compression with index array 2
CTYPE_INT3I 3-byte compression with index array 3 CTYPE_INT2N 2-byte compression w/o
index array 4 CTYPE_INT3N 3-byte compression w/o index array '

Restrictions
The input file must be a Matlab 4.x matrix type

B.1.1. lRSTERuncompressO — uncompress RSTER data file

Synopsis
int IRSTERuncompress C
kfile *fdi,
kfile *fdo)

Input Arguments
fdi

input file stream pointer
fdo

output file stream pointer

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This program inputs a Matlab version 4.x matrix file containing compressed RSTER type data, uncom-
presses selected matrices within the file, and writes each matrix to a second Matlab version 4.x matrix
file. If the Matlab file contains data in a supported machine format, it is converted to the local machine
format as needed. Otherwise an error is reported.

Matrices in the input file having names of the form "cpi#" are singled out for decompression. These
matrices contain complex data types whose real and imaginary components are stored as cither two-
byte or three-byte integers, depending on the mode of compression performed. Once it has been

148

comfirmed that the matrix is a "cpi#" matrix then the "ctype" is extracted and the matirx is decom-
pressed appropriately. For example if ctype = 1 or 2 then the "i_cpi#" following is recombined with the
"cpi#". If ctype = 0, then the matric is output as is since no compression was performed in the first
place.

Upon decompression the matrices in the files are bit by bit the same as the originals, i.e. the compres-
sion has been lossless.

B.1.2. Icalc_statistics() — calculate word length statistics

Synopsis
void
lcalc__statistics {

matrix *mat,
int *count2,

int *count3)

Input Arguments
mat

pointer to matrix structure

Output Arguments
count2

count of integers outside of 2-byte range
count3

count of integers outside of 3-byte range

Description
This procedure counts the number of entries in a matrix that lie out of the representable range of 2- and
3-byte signed integers. If the matrix is empty, zero counts are returned.

B.1.3. Ikmat2asc() — convert tnatrixfile data to ascii

Synopsis
int lkmat2asc(
kfile *fdi,
int do_text,
kfile *fdo)

149

Input Arguments
fdi

input file stream pointer
do_text

TRUE if data is to be sent to stdout FALSE if not.
fdo

output file stream pointer, or NULL

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This procedure read each matrix in a Matlab matrix file and converts each datum to ascii in succession.
Each datum is separated by a "newline" character. If the data is complex, the real and imaginary com-
ponents are listed on the same line, separated by a "space" character.

B.1.4. ItransposeQ — transpose a 2-D matrix of any type

Synopsis
static unsigned char msk[] = {

0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
};

int 1transpose(
int si,
int *dl,
int *d2,
kaddr x)

Input Arguments
si

size of each matrix item in bytes int *nl - pointer to size in fast dimension int *n2 - pointer to size in
slow dimension kaddr

x
pointer to matrix data of any type

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This procedure transposes a 2-D matrix of any fixed-size data type in-place using a permutation-by-
cycle algorithm. The matrix size parameters nl,n2 are interchanged to reflect the new matrix shape.

150

Reference: "Computational Frameworks for the Fast Fourier Transform", by Charles Van Loan, (SIAM)
1992.

Although the algorithm performs the transpose in place, an auxiliary vector of boolean values is
required for algorithm housekeeping. A type "unsigned char" array is employed in which individual bits
are utilized as flags. If the matrix is IxN or Nxl (a vector) the auxiliary vector is not allocated since no
data movement is needed.

Restrictions
If array of strings, each item must be same length

B.1.5. lfree_matrix() —free a Matlab-like matrix structure

Synopsis
void
1free_matrix(

matrix *mat)

Input Arguments
mat

pointer to matrix structure

Description
This procedure frees a Matlab-like matrix structure created by lcreate_matrix(). If the pointer to the
matrix is NULL, no action is taken.

B.1.6. IbswapJongO — reverse byte order of type long datum

Synopsis
void
lbswap_long(

long *datum)

Input Arguments
datum

pointer to type long datum

Description
This procedure reverses the byte order of a single type long datum. If the pointer is NULL, no action is

151

taken.

B.1.7. lbswap_matrix() — reverse byte order of matrix data

Synopsis
int
lbswap_matrix(

matrix *mat)

Input Arguments
mat

pointer to matrix structure

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This procedure reverses the byte order of matrix data in place. The real and imaginary components of
complex matrix data must be contiguous in memory, that is, all real components must come first fol-
lowed by all the imaginary components.

B.1.8. Icreate_matrix0 — create and initialize matrix structure

Synopsis
matrix *
lcreate_matrix(
char *name,
int m,
int n,
int mtype,
int dtype,
int ctype)

Input Arguments
name

matrix name
m

number of rows in matrix
n

152

number of columns in matrix
mtype

matrix type (e.g. MTYPE_REAL)
dtype

data type (e.g. DTYPE_FLOAT)
ctype

compression type (e.g. CTYPE_INT2I) argument - explanation

Returns
Pointer to matrix struct, or NULL if an error occurred.

Description
This procedure creates a matrix by allocating a matrix structure, initializing the matrix header attributes,
and allocating memory for matrix data. The matrix should be deallocated using the routine
lfree_matrix().

B.1.9. ldtype_size() — return size of matrix data type in bytes

Synopsis
size_t
ldtype_size(

int dtype)

Input Arguments
dtype

matrix data type (e.g. DTYPE_DOUBLE)

Returns
Size of data type in bytes, or zero if unsupported type

Description
This procedure returns the size in bytes of a matrix data type. If the type is unsupported, zero is
returned. Only real data types are represented here. A matrix is complex if the matrix type is
MTYPE_COMPLEX, regardless of the data type.

B.1.10. lfget_matrix_dataO — read matrix data segment

153

Synopsis
int
lfget_matrix_data(
matrix *mat,
kfile *fd)

Input Arguments
mat

pointer to matrix structure
fd

file stream pointer

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This procedure obtains the matrix size from the matrix header, allocates a data buffer for the data, reads
in the matrix data, converts the data to local machine format, and updates the appropriate pointer entries
in the matrix header struct.

If an error occurred, the data buffer is freed, the ointers in the matrix header struct are set to NULL, and
the procedure returns FALSE (0). If successful, the procedure returns TRUE (1).

B.1.11. Ifget_matrix_header0 — read in next matrix header

Synopsis
matrix *
lfget_matrix_header(

kfile *fd)

Input Arguments
fd

file stream descriptor

Returns
Pointer to matrix structure, or NULL if an error

Description
This procedure allocates a matrix structure and reads a matrix header starting at the current file position
pointer. Be sure to free the matrix structure when it is no longer needed, using the procedure
Ifree_matrix().

154

B.1.12. lfget_next_matrix() — read in next matrix from transport

Synopsis
matrix *
1fget_next_matrix (

kfile *fd)

Input Arguments
fd

file stream pointer

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This procedure calls a sequence of two procedures that allocate a matrix structure, read a matrix header
starting at the current file position pointer, allocate a buffer for the data based on the size information in
the header, then read the matrix data that follows the header into the allocated buffer. If the machine
format of the data in the file differs from the machine format of the local machine, the byte order of the
data is reversed in place.

B.1.13. Ifput_matrix_dataO — write out matrix data

Synopsis
int
l£put_matrix_data(
matrix *mat,
kfile *fd)

Input Arguments
mat

pointer to matrix structure
fd

file stream pointer

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This procedure writes out the matrix data from the buffer pointed to by the matrix struct to a matrix file

155

starting at the current file position.

B.1.14. lfput_matrix_header() — write out matrix header

Synopsis
int
lfput_matrix_header(
matrix *mat,
kfile *fd)

Input Arguments
mat

pointer to matrix structure
fd

file stream pointer

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This procedure writes a file matrix header (struct Fmatrix) followed by the NULL-terminated matrix
name to a matrix file starting at the current file position pointer.

B.1.15. Ifput_next_matrix0 — write out matrix to transport

Synopsis
int
l£put_next_matrix(

matrix *mat,
kfile *fd)

Input Arguments
mat

pointer to matrix structure
fd

file stream pointer

Returns
TRUE (1) on success, FALSE (0) otherwise

156

Description
This procedure calls a sequence of two procedures that extract matrix information from a memory
matrix struct (struct matrix) and write a file matrix (struct Fmatrix) header, a NULL-terminated matrix
name, and finally, the matrix data, to a matrix file, beginning at the current file position.

B.1.16. Immach_to_local() — convert machine data order to local

Synopsis
int
lmmach_to_local(

matrix *mat)

Input Arguments
mat

pointer to matrix struct

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This procedure converts memory matrix data from the machine format of the originating architecture to
the machine format of the local architecture. If the machine architecture is not supported, no action is
taken, and an error condition is returned. If successful, the "mat->mmach" entry in the matrix struct is
updated to the value of the local architecture (MMACH_THIS_MACHINE).

The matrix namelength and dimensions are assumed to be in local machine format, which is done by
the routine fget_next_header().

If successful, TRUE (1) is returned, otherwise FALSE (0) is returned. The user can also compare the
resulting machine type in "mat->mmach" with MMACH_THIS_MACHINE to determine if the conver-
sion was successful.

157

12. Critical Design Review For
Advanced Signal Processing,

RLSTAP Validation in Khoros 2.1

Marc Friedman
Maui High Performance Computing Center (MHPCC)

Joe Fogler
Albuquerque High Performance Computing Center (AHPCC)

6 May, 1997

To Support Contract Statement of Work Subtask 4.1.4.1, Research necessary
changes to RLSTAP to migrate the SP-2 to Khoros 2.0 Interface.

158

1 Introduction

This report summarizes a comparative test and evaluation of selected software components of the
Khoros 2.1 version of the Rome Laboratory Space Time Adaptive Processing / Algorithm Develop-
ment Tool (RLSTAP/ADT) against the original Khoros 1.0 implementation.

The RLSTAP/ADT environment utilizes Khoros and its graphical programming environment
Cantata to represent a state-of-the-art development environment for clutter modeling and radar
simulation for advanced early warning (AEW) applications. Written initially in Khoros version 1.0,
(RLSTAPJQ), RLSTAP has been ported to Khoros release, version 2.1, (RLSTAP_K2) by United
States Research Lab - Rome with development performed by Kaman Sciences Inc. and Technology
Services Corp.

RLSTAP VI.0 was sponsored by the Defense Advanced Research Projects Agency / Sensor
Technology Office (DARPA/STO) Advanced Signal Processing (ASP) program which focuses on
advanced processing techniques and technologies for next generation airborne early warning (AEW)
platforms.1 A key technology area for this activity is software tools and methodologies for collabora-
tive algorithm development. RLSTAP V2 was sponsored by the DARPA/ Information Technology
Office (ITO) to support foliage penetration technology.

Khoros and Cantata are the flagship products of Khoral Research Incorporated (KRI), a spinoff
company from the University of New Mexico Electrical and Computer Engineering Department.
Khoros is a software integration and development environment for information processing, data ex-
ploration and visualization.2 Khoros is a comprehensive software system with a rich set of tools us-
able by both end-users and application developers. Included in these tools is Cantata which provides
users the ability to construct complex algorithms by interconnecting iconic representations, called
glyphs, of processing functions in a terminal window called a workspace, using mouse point-and-click
operations. Khoros has become a de-facto standard for collaborative algorithm development in the
Department of Defense automatic target recognition (ATR) community.

2 Scope

2.1 System Overview

The vast majority of programs written for or supplied with the Khoros environment are kroutines.
These include all data processing programs such as image processing and signal processing rou-
tines. Kroutines are fully usable from within the Cantata graphical programming environment, but
generally do not display graphics or images; they simply input data, process it, and output results.

The software tested and evaluated under this task was in the form of Khoros 2.1 compatible
kroutines most of which were grouped into functional Cantata workspaces. The major software
modules tested under this task, representing key functionalities in selected RLSTAP toolboxes, were
as follows:

rsterin - a routine for importing RSTER files into RLSTAP
convbf - a workspace representing a conventional beamformer algorithm
jdo - a workspace representing a joint-domain-optimal STAP algorithm
phymod - a workspace representing a physical radar model

Each of these software modules have RLSTAP counterparts written in Khoros 1.0. The Khoros
2.1 implementations were evaluated-against their Khorös 1.0 counterparts to determine:

1G. W. Titi, An Overview of the ARPA/NAVY Mountaintop Program, Proceedings IEEE Adaptive Antenna
Systems Symposium, (1994).

2See KRI's website at http;//www.khoral.com/ for more details.

159

1. That the Khoros 2.1 implementation (RLSTAP_K2) produces the same results within machine
precision tolerance as the Khoros 1.0 implementation (RLSTAP_K1).

2. The execution speed of RLSTAPJK2 relative to that of RLSTAPJK1.

2.2 Limitations

The Khoros 1.0 version of RLSTAP was developed under the SunOS/Solaris operating system on a
SUN SPARC computer. To simplify testing procedures, and to allow timing benchmark comparisons,
both versions were tested on the same SPARC machine under the Solaris operating system. Although
a RLSTAP_K2 distribution was successfully compiled under the IBM AIX operating system, only
the Solaris results are reported herein.

The version of RLSTAP_K2 available for testing under this task was a preliminary version (des-
ignated distribution #6). Some of its capabilities which were to be evaluated, were not yet fully
functional as of June 30, 1997, the deadline established in the design document that defined the
validation task. In particular, the physical model workspace (phymod.wksp) was not yet fully func-
tional. Consequently, only mathematical comparisons were performed on working sections of the
workspace, and timing benchmarks were not performed.

3 Reference Documents

On-line help and manual pages from both the Khoros 1.0 and Khoros 2.1 implementations of RL-
STAP served as guides for determining the correct operation of the functionalities to be tested. In
addition, a preliminary Programmers Guide was received from Kaman Sciences in the form of a
formatted Khoros 2.1 toolbox manual. A number of phone calls were also made to Kaman Sciences
Inc., which provided invaluable information and tireless assistance in getting the environments to
run.

4 Design

4.1 Software Development Plan

Though this task did not develope RLSTAP, number of shell script were written to facilitate com-
parisons between results from the Khoros 1.0 and Khoros 2.1 RLSTAP versions. These scripts are
not deliverables under the validation task.

The following scripts were utilized for testing:

rcheck - A script for computing the extrema of the ppintwise absolute
difference of two data files. Due to a difference in the
ordering of data dimensions between Khoros 1.0 and Khoros 2.1

files, a feature was incorporated into the script that

reoriented the dimensions of Khoros 1.0 files to match those

of their Khoros 2.1 counterparts before the comparisons.

This script compared the real and imaginary parts separately.

rstats - A script for comparing the statistics of two data files. • .
This script was utilized when the Khoros 1.0 and Khoros 2.1

versions of a routine yielded data vectors of slightly

different length. Since pointwise comparisons could not be

done in such cases, the results were compared statistically,
(i.e. the means and standard deviations were compared).

160

convbf.sh - A script for timing the individual routines in the Khoros 1.0

version of the conventional beamformer baseline workspace.
The unix routine TIMEX was utilized to time individual routines.

jdo.sh - A script for timing the individual routines in the Khoros 1.0
version of the joint-domain-optimal basline workspace.

note: - The Khoros 2.1 versions of the conventional beamformer and
joint-domain-optimal workspaces were timed using the

QSERVER data logger feature of the RLSTAP_K2 environment.

4.2 Data Description
A number of RSTER data files were made available by MHPCC for testing. The detailed results pre-
sented in this report were obtained using the file t38-01v3.mat. This Matlab 4.2 compatible file was
imported into the RLSTAPJQ and RLSTAP.K2 environments using the corresponding RSTERin
routine. The first coherent pulse interval data cube in the Matlab file, e.g. t38-01v2.mat.cpi.l, was
utilized in the testing of the convbf and jdo workspaces. The phymod workspace generated its own
data and did not require the converted Matlab file as input.

5 Test Results

Testing was performed in stages: (1) test compilation of RLSTAPJK2 on both the SPARC and
AIX architectures, (2) mathematical comparison of results of selected routines and workspaces in
RLSTAP-K1 versus RLSTAP_K2, and (3) a comparison of the execution speed of the two imple-
mentations on the same machine architecture and configuration.

5.1 Test Compilation
The RLSTAPJK2 environment was re-compiled on an ADC based R6000 workstation.

The compilation procedures for RLSTAP under Khoros 2.1 on an AIX
machine were as follows:

(1) Create home directory for RLSTAP2 and tar in.distribution tape
(2) Run distribution command file

- chmod +x set.6.cmd # assumes distribution number is six
- set.6.cmd

(3) Uncompress the distribution archive
- uncompress -c set.6.tar.Z I tar xvf

(4) For a full installation (distribution includes source code)

- swtools/bin/r2bootstrap -makemakeall -install

Additional compilation procedures: -

(5) Modify the defines in AlX.cf configuration file in Khoros
bootstrap config directory as follows

- #define FortranOptFlags -0 -qextname

161

- #define LibraryFOptFlags -0 -qextname

- #define FortranDebugFlags -g -qextname

- #define LibraryFDebugFlags -g -qextname

(6) Set environmental variables as follows
- FFLAGS="-0 -qextname"
- EXTRA_L0AD_FLAGS=-xlf90

These settings address trailing underscores in function names
and the linking of FORTRAN code in Makefiles

All toolboxes compiled under AIX except the plot toolbox. There were some missing Imakefiles
and Makefiles in the higher directory levels of this toolbox. However, individual tools could be
compiled under AIX manually from within their own subdirectories.

The plot tool rlplot would not compile successfully until a Macro name was redefined. In the file
rL3dscene.c a macro named DTR was redefined as the name of a constant. By redefining the name
of the constant to DTRAT (DT ratio) so that it would no longer conflict with the Macro name, the
plot tool could then be compiled.

5.2 Environment Setup

Once the RLSTAP-K2 distribution was compiled, the user environment needed to be configured.

The steps are as follows:

(1) Create a working directory in user area and go there

(2) Source the r2developer shell script to initialize environment

'/. source $R2_H0ME/swtools/bin/r2developer

(3) Run init_rlstap2 script to create working subdirectories

for data workspaces. A script called rlstap2 is also created.
7. $R2_H0ME/universal/bin/init_rlstap2

(4) Create a file called .Toolboxes in user's home directory
(not the previously mentioned working directory). Add names and

paths of personal toolboxes to be included with RLSTAP2 on invocation.

(5) To execute RLSTAP_K2 from working directory, run rlstap2

script in foreground.

*/, rlstap2

5.3 Verification of Selected Routines

The following routines and workspaces were first executed in the RLSTAPJK1 environment to es-
tablish a baseline. The same routines and workspaces were then executed in the RLSTAP_K2
environment and the results generated by the RLSTAP-K2 environment were compared against
those generated in the RLSTAPJQ version. Any differences that were encountered are noted.

1. rsterin - a routine for importing RSTER files into RLSTAP

2. convbf - a workspace representing a conventional beamformer algorithm

3. jdo - a workspace representing a joint-domain-optimal STAP algorithm

162

4. phymod - a workspace representing a physical radar model

5.3.1 RSTERin

RSTER data in the form of Matlab 4.2 compatible matrix files is imported into the RLSTAP
environment using RSTERin. Each matrix file may contain more than one coherent pulse interval
(cpi) data cube, which is placed in its own individually numbered output file. In the RLSTAPJK2
version, the cpi data are placed in the value segment of a Khoros data object. Ancillary matrices
(mostly scalars) are placed in global attributes of the Khoros data object.

The following data exchanges were tested in RLSTAP JK2:

- RSTER data into RLSTAP

- RLSTAP to RSTER data

- RLSTAP to Matlab

- Matlab to RLSTAP

RSTERin was found to function properly in each instance. The results of the Khoros 1.0 and

Khoros 2.1 versions were compared using the aforemetioned rcheck script and were shown to be
mathematically identical. However, two phenomena were noted:

(1) When Khoros 1.0 RSTER data was imported into Khoros 2.1 routines

used to compare data values, the depth and elements dimensions

in the Khoros 2.1 polymorphic data model were interchanged. Although

this did not actually affect data ordering, the dimension labels
had to be interchanged (using the Khoros {\it korient} routine)
before subsequent data comparisons could be made.

(2) A number of the RLSTAP_K2 data object attribute names, even

without their {\it rlstap2_} prefixes, were-too long for
Matlab 4.2 to handle and were truncated to 19 characters when

converted back into Matlab form via the routine RSTERout.

5.3.2 convbf

The conventional beamformer RLSTAP.K2 workspace was composed of the following glyphs (rou-
tines):

- WindowGen (window data generator, e.g. Hamming) (4 instances)
- PC (pulse compression)
- Extract (extract section of data cube)
- MotionComp (motion compensation)
- MTI (moving target indicator)
- DopplerSubband

- FFT
- Normalize

- ConvRule (conventional beamformer rule)
- SteerVector

- CnvBF

- Floor

- CA_CFAR (cell averaging CFAR) "

- GG_CFAR (greatest-of CFAR)

- 0S_CFAR (ordered statistic CFAR)

- TM.CFAR (trimmed-mean CFAR)

- Detect (detection module) (4 instances)

163

The Khoros 1.0 and Khoros 2.1 versions of the convbf workspace are depicted in Figure 1 and
Figure 2, respectively. When multiple instances of the same glyph (e.g. WindowGen) were encoun-
tered in a workspace, they were numbered sequentially starting with the top left of the workspace
and proceeding toward the bottom right. The outputs of each glyph in the workspaces were given
names that reflect the glyphs from which they were generated. For example, the output of the second
Detect glyph was designated 'Detect2.kdf in the Khoros 2.1 workspace. The workspace glyph pane
parameters were adjusted in the Khoros 1.0 version to match the baseline workspace settings of the
Khoros 2.1 version. Occasionally, settings in the Khoros 2.1 version were found to be inconsistent.
In that event, information was derived from the Khoros 1.0 version to determine proper settings.

Glyph | | COPYRIGHT I

Procedures Edit

Utilities Workspace

Roue Laboratory Space-Tine Adaptive Processing / Algorithm Development Tool CRLSTAP/ADT)

Main Cantata Workspace

■'a ci'<" • ' • s

3E2H ;-.■■•,. «iflrni: y.!.'.'j.iiii:

IÜJU&J I E231. ZEBQ;

C3GZ3 ' W3SSM ' 2=aQ..'

Figure 1. Khoros 1.0 conventional beamformer workspace.

164

Figure 2. Khoros 2.1 conventional beamformer workspace.

Each computational glyph produced identical results in the RLSTAPJQ and RLSTAPJK2 ver-
sions except for the following two glyphs:

Normalize:
The real and imaginary parts of the Khoros 1.0 and Khoros 2.1

versions differed very slightly (by one count out of 24 mantissa bits).
Such differences can arise from performing computations in a slightly
different order in the two cases. The difference is not significant.

Floor:
The Khoros 2.1 RLSTAP Floor function vould not complete without error

in this workspace. An error was reported from Khoros data services
in the kdms layer, indicating that an index order had not been specified.
This may have been caused by. a memory leak but that is not certain.
This same function produced the correct result in the jdo workspace and
did not report an error. There may be some combination of settings that
causes this failure.

165

5.3.3 Joint Domain Optimum STAP

The joint-domain-optimal STAP RLSTAPJK2 workspace was composed of the following glyphs
(routines):

- WindowGen (window data generator, e.g. Hamming) (4 instances)
- PC (pulse compression)

- Extract (extract section of data cube) (3 instances)

- MotionComp (motion compensation)
- MTI (moving target indicator)

- JDORule (joint-domain-optimal rule)

- Covar (covariance)

- DiagLoad

- InvCovar (inverse covariance)

- SteerVector

- STAPWgts

- BeamForm

- Floor
- SignalLevels (has no data object output)

- CA_CFAR (cell averaging CFAR)

- G0_CFAR (greatest-of CFAR)
- 0S_CFAR (ordered statistic CFAR)
- TM_CFAR (trimmed mean CFAR)
- Detect

The Khoros 1.0 and Khoros 2.1 versions of the jdo workspace are depicted in Figure 3 and Figure
4, respectively. When multiple instances of the same glyph (e.g. WindowGen) were encountered
in a workspace, they were numbered sequentially starting with the top left of the workspace and
proceeding toward the bottom right. The outputs of each glyph in the workspaces were given names
that reflect the glyphs from which they were generated. For example, the output of the second
Detect glyph was designated 'Detect2.kdf in the Khoros 2.1 workspace. The workspace glyph pane
parameters were adjusted in the Khoros 1.0 version to match the baseline workspace settings of the
Khoros 2.1 version. Occasionally, settings in the Khoros 2.1 version were found to be inconsistent.
In that event, information was derived from the Khoros 1.0 version to determine proper settings.

166

I GlHph | | COPYRIGHT |

Procedure* I I Edit

Utilities I I Uorkspace

QUIT

Rone Laboratory Space-Tine Adaptive Processing / fllgorith« Development Tool (RLSTAP/ADT)

Hain Cantata Uorkspace

Figure 3. Khoros 1.0 joint-domain-optimal STAP workspace.

167

najji|ijM»jgjgggjjj|m^j||^ajj^|^^^>^^^iMM^M^^^^^^^^^^^^^;

Figure 4. Khoros 2.1 joint-domain-optimal STAP workspace.

Each computational glyph in the jdo workspace produced identical results in the RLSTAP_K1
and RLSTAPJK2 versions except for the following minor differences:

Floor:
The Floor glyph outputs differed slightly in the Khoros 1.0 and

Khoros 2.1 versions. This difference was only one count of
24 mantissa bits, and can be considered insignificant. However,
based on results from the convbf baseline workspace, there are
certain combinations of parameters and data that cause the glyph
to fail. See the previous convbf section for further details.

Extract:
The outputs of Extract2 and Extract3 differed from their Khoros 1.0

counterparts because their input stimulus was the output of the
Floor glyph. The differences did not exceed one count out of 24
mantissa bits. The first Extract (Extractl) glyph did not depend
on the output of the Floor glyph, and produced identical results
to its Khoros 1.0 counterpart.

168

5.3.4 phymod

The physical model RLSTAPJK2 workspace was composed of the following glyphs (routines):

WindowGen (window data generator, e.g. Hamming)

PMAntPatWin (antenna pattern window generator)
Normalize

PMSetup

PMEnv

RcvPlat

AntPatCos
RcvAnt

XmtPlat

XmtAnt

Target

BNJam

CltrMaps
CltrPlse

RPESum

RcvrNoise

RcvrBP

SignalLevels
CNRCalc

(scale amplitude)

(antenna pattern cosine shape)

(target model)
(jammer model)

(no data object output)

(3 instances)
(3 instances)
(3 instances)

(2 instances)
(2 instances)

The Khoros 1.0 and Khoros 2.1 versions of the phymod workspace are depicted in Figure 5
and Figure 6, respectively. When multiple instances of the same glyph (e.g. WindowGen) were
encountered in a workspace, they were numbered sequentially starting with the top left of the
workspace and proceeding toward the bottom right. The outputs of each glyph in the workspaces
were given names that reflect the glyphs from which they were generated.

169

Glyph 1 1 COPYRIGHT 1

Procedures Edit

Utilities Workspace

Roue Laboratory Space-Tine Adaptive Processing / Algorlthn Development Tool (RLSTAP/ADT)

Figure 5. Khoros 1.0 physical model workspace.

170

Figure 6. Khoros 2.1 physical model workspace.

The following phymod workspace glyphs produced results that differed between the RLSTAP_K1
and RLSTAP-K2 versions:

Normalizel, Normalize2, Normalize3:
The real and imaginary parts of the Khoros 1.0 and Khoros 2.1

versions differed very slightly (by one count out of 24 mantissa bits).
Such differences can arise from performing computations in a slightly
different order in the two cases. The difference is not significant.

PMEnv:
This glyph primarily generates attribute information. However, it

also generates a value segment (in Khoros 2.1 version) that contains
a single complex value. This value is apparently unused by succeeding
glyphs which simply extract attribute information from this glyph's
output. The data segments of both the Khoros 1.0 and Khoros 2.1
counterparts contain a single uninitialized value which is different
in the two versions. Since the datum is not used by subsequent
glyphs, its value is of no consequence.

171

RcvPlat:
This glyph primarily generates attribute information. It propagates

the single datum from PMEnv to its own output, but does not appear

to utilize the value in any calculations.

Rcvant, XmtPlat, and XmtAnt:
These glyphs generate data that are nearly identical to their

Khoros 1.0 counterparts. The output data values only differ by

a maximum of one count out of a maximum 24 bits of mantissa.

Target1 and Target2:
These glyphs generate arrays that differ by one in length compared

to their Khoros 1.0 counterparts. For example, for the same parameter

settings, the Khoros 1.0 version generates a 740x18x1x1x14 data cube

whereas the Khoros 2.1 version generates a 741x18x14x1x1 data cube.

Also note, that the depth (3rd) and elements (5th) dimensions are

interchanged. Although the data is the same physical order in memory,

its depth and elements dimension labels are interchanged. The rcheck

script, mentioned in an earlier section, which is used to compare
data files, is able to interchange the labels before comparisons are made.

However, the rcheck script is not able to compare files that have
different total sizes. Thus, the 740 vs 741 difference posed a problem.

Comparisons were further complicated by the fact that the random
number generator seed values could not be specified in the Khoros 1.0

version.

The solution was to measure the statistics of the two files to
determine if they are similar. A second script, rstats, was utilized
to measure the means and standard deviations of the Khoros 1.0 and

Khoros 2.1 version data files. The statistical comparison indicated
that the two files were very similar. The means and standard deviations

did not differ by more than 0.07 percent of full scale. Thus, the

target glyphs are probably producing correct numbers, although the .

array lengths and sample spacings differ by one.

BNJaml and BNJam2:
The Khoros 1.0 and Khoros 2.1 versions of these glyphs produced

very different results. The differences Were nearly an order of
magnitude. A careful check of the jammer parameters did not reveal
any differences in settings that might account for the results.

It would appear that the Khoros 1.0 and Khoros 2.1 versions are

implementing different algorithms, or there is a problem in one

version or the other.

CltrMaps and CltrPlse:.
These two glyphs are slightly different in the Khoros 1.0 versus

Khoros 2.1 versions. Some of the calculations are partitioned
differently between the two glyphs in the two versions. The following

outputs were found to be statistically similar for the two versions:

172 f

- CltrMaps.DoppMap

- CltrMaps.EAngMap

- CltrMaps.TcvfMap
- CltrMaps.THgtMap

- CltrMaps.GAngMap
- CltrMaps.GCofMap

The following outputs were found to be dissimilar indicating

that the algorithms are not the same in the two versions:

- CltrMaps.BackMap

- CltrPlse.Imap

RPESum:
Since the RPESum inputs include the BNJaml and BNJam2 glyph

outputs, their inclusion caused the Khoros 2.1 version of
RPESum outputs to differ subtantially from those of the

Khoros 1.0 version. The RPESum glyph was re-tested with the
BNJaml and BNJam2 inputs disconnected. This modification did

not change the outcome of the experiment. The two versions

produced statistically dissimilar results.

RcvrNoise, etc.:
All subsequent glyphs could not be tested since there was

no common data from previous glyphs to provide proper stimulus.

5.4 Execution Speed Tests

Both the Khoros 1.0 and Khoros 2.1 versions of the convbf and jdo workspaces were executed on a
Fujitsu ULtraSparc clone machine running SunOS 5.5.1. The UltraSparc clone had 128MBytes of
system memory. The machine was restricted to a single user during the benchmarks. However, the
binaries were accessed via a NFS mount which caused some minor differences between runs.

The Khoros 1.0 version was utilized in the form it was shipped from Rome Labs and was
not re-compiled locally. The Khoros'2.1 version was compiled on a local SparcStation using the
/opt/SUNWSpro c compiler, and the binaries were made accessible to the Sparc clone upon which
the benchmarks were executed.

5.4.1 Overall Speed

The convbf and jdo workspaces were executed in both the Khoros 1.0 and Khoros 2.1 environments
and their overall execution times were recorded. The results are as follows:

Workspace Version Run Number Execution Time

convbf Kl 1 2 minutes 34 seconds

convbf Kl 2 2 minutes 25 seconds

convbf . Kl. 3 2 minutes 26 seconds

convbf Kl 4 2 minutes 27 seconds

convbf Kl . 5 2 minutes 27 seconds

average 2 minutes 27.8 seconds

172

Workspace Version Run Number Execution Time

convbf K2 1 1 minute 16 ; seconds

convbf K2 2 1 minute 16 : seconds

convbf K2 3 1 minute 13 ; seconds

convbf K2 4 1 minute 14 : seconds

convbf K2 5 1 minute 13 : seconds

average 1 minute 14.4 seconds

Workspace Version Run Number Execution Time

jdo Kl 1 4 minutes 41 seconds

jdo Kl 2 4 minutes 44 seconds

jdo Kl 3 4 minutes 43 seconds

jdo Kl 4 4 minutes 26 seconds

jdo Kl 5 4 minutes 52 seconds

average 4 minutes 41.2 seconds

Workspace Version Run Number Execution Time

jdo K2 1 1 minute 36 seconds

jdo K2 2 1 minute 27 seconds

jdo K2 3 1 minute 23 seconds

jdo K2 4 1 minute 32 seconds

jdo K2 5 1 minute 32 seconds

average 1 minute 30.2 seconds

Thus, the RLSTAP-K2 version of the convbf workspace executed nearly twice as fast than its
RLSTAPJQ counterpart, and the RLSTAP-K2 version of the jdo workspace executed approximately
three times faster than its RLSTAP-K1 counterpart. Although the comparisons cannot be considered
absolute, since the two versions were not compiled in the same manner, the results are indicative
that the RLSTAP_K2 versions are more efficient than their RLSTAPJCl counterparts.

5.4.2 Timings of Individual Routines

The execution speed of individual routines within the two workspaces was measured. Scripts were
constructed from the Khoros 1.0 workspaces that utilized the Unix timex function to obtain measure-
ments. The execution speed of individual routines in the Khoros 2.1 version was obtained utilizing
the timing functions provided with the QSERVER logging mechanism. An attempt was made to
disable the QSERVER (using QENABLE=0) and invoke the Unix timex function within a script,
without success. Although the QSERVER mechanism reports the user and sys times, it does not
report real time which includes time spent performing I/O. Thus, the real time measurement is
unable for the Khoros 2.1 version.

The execution times (in seconds) for the convbf workspace were as follows:

Version Function user sys . real

Kl WindowGenl 0.02 0.03 1.42

Kl WindowGen2 0.02 0.06 0.57

Kl WindowGen3 0.02 0.04 0.58

Kl WindowGen4 0.01 0.05 0.56

Kl PC 1.92 0.09 8.43

174

Kl Extract 0.28 0.09 6.45
Kl MotionComp 0.10 0.08 6.32
Kl MTI 0.14 0.14 5.95
Kl DopplerSubband 0.13 2.35 8.55
Kl ConvRule 0.05 0.17 5.60
Kl SteerVector 0.09 0.15 1.94
Kl FFT 0.04 0.06 0.89
Kl CnvBF 0.12 0.25 2.24
Kl Normalize 0.07 0.02 0.77
Kl Floor 0.07 0.04 1.12
Kl CA_CFAR 14.97 0.07 16.10
Kl G0_CFAR 16.14 0.07 17.33
Kl OS.CFAR 26.71 0.07 27.91
Kl TH_CFAR 28.15 0.06 29.26
Kl Detect1 0.14 0.07 1.53
Kl Detect2 0.14 0.07 1.51
Kl Detect3 0.15 0.05 1.54
Kl Detect4 0.13 0.06 2.24

Version Function user sys
K2 WindowGenl 0.14 0.10
K2 WindowGen2 0.10 0.10
K2 WindowGen3 0.12 0.08
K2 WindowGen4 0.11 0.15
K2 PC 0.53 0.14
K2 Extract 0.27 0.12
K2 MotionComp 0.25 0.16
K2 MTI 0.41 0.10
K2 DopplerSubband 1.76 0.12
K2 ConvRule 0.17 0.10
K2 SteerVector 0.09 0.15
K2 FFT 0.04 0.06
K2 CnvBF 0.16 0.15
K2 Normalize 0.13 0.10 .
K2 Floor 0.17 0.12
K2 CA.CFAR 8.47 0.06
K2 GO.CFAR 9.24 0.19
K2 DS_CFAR 12.22 0.09
K2 TM_CFAR 12.81 0.07
K2 Detectl 0.26 0.13
K2 Detect2 0.25 0.11
K2 Detect3 0.26 0.05
K2 Detect4 0.22 0,19

The execution times (in minutes and seconds) for the jdo workspace were as follows:

/ersion Function user sys real
Kl WindowGenl 0.01 . 0.03 0.72
Kl WindowGen2 0.01 0.02 0.61
Kl WindowGen3 0.01 0.07 0.59
Kl WindowGen4 0.03 0.11 0.61
Kl PC 1.93 0.18 8.34

175

Kl Extract1 0.25 0.17 10.61

Kl MotionComp 0.09 0.10 6.44

Kl MTI 0.18 0.06 6.50

Kl JDORule 0.07 0.07 5.99

Kl SteerVector 0.12 0.12 2.47

Kl Covar 57.78 0.14 1:01.81

Kl DiagLoad 0.09 0.06 5.22

Kl InvCovar 56.71 5.07 1:05.48

Kl STAPWgts 1.47 0.09 4.07

Kl BeamForm 1.61 0.16 3.77

Kl Floor 0.03 0.07 1.14

Kl Extract2 0.12 0.07 2.16

Kl Extract3 0.11 0.06 1.92

Kl CA_CFAR 15.02 0.06 16.18

Kl G0_CFAR 16.14 0.09 17.58

Kl 0S_CFAR 26.80 0.12 28.22

Kl TM_CFAR 28.20 0.07 30.19

Kl Detectl 0.15 0.02 1.66

Kl Detect2 0.13 0.08 2.04

Kl Detect3 0.14 0.06 2.25

Kl Detect4 0.14 0.06 1.66

Version Function user sys

K2 WindowGenl 0.11 0.11
K2 WindowGen2 0.13 0.10

K2 WindowGen3 0.10 0.10

K2 WindowGen4 0.12 0.10

K2 PC 0.51 0.13

K2 Extract1 0.28 0.08

K2 MotionComp 0.29 0.09

K2 MTI 0.36 0.11
K2 JDORule 0.19 0.12

K2 SteerVector 0.23 0.16

K2 Covar 5.25 0.08
K2 DiagLoad 0.22 0.11
K2 InvCovar 5.59 3.35

K2 STAPWgts 0.40 0.19

K2 BeamForm 1.15 0.10

K2 Floor 0.21 0.08

K2 Extract2 0.20 0.16
K2 Extract3 0.23 0.13

K2 CA_CFAR 8.47 0.07

K2 GD.CFAR 9.37 0.07
K2 0S_CFAR 12.17 0.11
K2 TM.CFAR 12.79 0.08
K2 Detectl 0.31 0.07
K2 Detect2 0.26 0.07

K2 Detect3 0.25 0.11
K2 Detect4 0.24 0.05

176

5.5 Summary

Selected routines and workspaces from the RLSTAP_K2 environment were evaluated in terms of
mathematical accuracy and throughput performance. Mathematical accuracy was determined by
comparing the results of selected workspaces with that of their RLSTAPJK1 counterparts.

The RSTERin routine, used to import Matlab compatible files into the RLSTAP environment
was tested and found to produce results equivalent to that of the RLSTAPJK1 version.

The convbf and jdo baseline workspaces were tested and found to produce results that were, in
most cases, identical to those of their RLSTAP-K1 counterparts, and those routines that produced
different results, differed only by one count in 24 bits. (1 part in 2 raised to the 24th power).

The phymod workspace functionality was incomplete in the current version of RLSTAP_K2. The
most notable differences were in the Jammer model glyphs.

The execution speeds of the convbf and jdo workspaces were measured and compared with their
RLSTAP_K1 counterparts. The new RLSTAPJK2 routines were 2 to 3_ times faster than their
RLSTAP JK1 counterparts.

177

6 Appendices

6.1 Appendix A - Parameter Settings for the Conventional Beamformer

The parameter settings for the conventional beamformer workspace are as follows.

PMSetup:
Experiment Name: RLSTAP ADT DEMONSTRATION

CPI number: 1

Radar Operational Range:

Min Operational Range (km) 6.45

Max Operational Range (km) 110.0

Azimuth Simulation Parameters:

Coordinate System [ACS]

Azimuth Start Angle (deg) -180.0

Azimuth Stop Angle (deg) 180.0

No. of Azimuth Cells 256

Doppler parameters:
No. of freq bins over the PRF 256

PMEnv:
Model Initialization parameters:

Specify Map or Simulated Clutter Type:

[ON] Site Specific Clutter

DMA/USGS Input File ./Maps2/wsmr.cvr

[OFF] Simulated Homogeneous Clutter

[ON] Agricultural

Curved Earth multiplier k: 1.3333

RcvPlat:

Platform Latitude:
Deg 33.7514 Min: 0.0 Sec 0.0

Platform Longitude:
Deg -106.3720 Min: 0.0 Sec: 0.0

Platform Altitude (km) 0.0384 [AGL]

Platform Heading (deg GSCS) 270.0

Platform Speed (m/sec) 172.0
Platform Roll Angle (Deg) 0.0

Platform Pitch Angle (Deg) 0.0

Platform Yaw Angle (deg) 0.0

Receiver Phase Center Displacement:

X 0.0 Y 0.0 Z 0.0

178

Receive Data Sampling Freq: (MHz) 1.0

AntPatCos:

Pedestal level: v_ped (dB) -100
Angle scale factor: k 1.0

Exponent: x 1.0

No. of Spatial Pattern Samples 256

Spatial Pattern Angles:
Start (deg ACS) -180.0

Stop (deg ACS) 180.0

WindowGenl:
Number of points to generate 24

Window Function Type [Dolph Chebyshev]

Peak Sidelobe Level (dB) 32.5

WindowGen2:
Number of points to generate 14

Window Function Type [Rectangular]
Start Index 1

Stop Index 14

WindowGen3:
Number of points to generate 14

Window Function Type [Rectangular]

Start Index 1
Stop Index 14

PMAntPatWinl:

Element Pattern Type (Voltage):
[Isotropie]

Shape Factors:
Pedestal Level: v_ped (dB) -100

Angle Scale factor: k 1.0

Exponent: x 1.0

Steering Angle (deg ACS) 0.0

Number of elements 24
Spacing / Wavelength 0.5

Amplitude Error RMS (dB) 0.00000000

Phase Error RMS (dB) 0.00000000

No. of spatial pattern samples 256

Spatial Pattern Angles:

Start (deg ACS) -90.0

Stop (deg ACS) 90.0

PMAntPatWin2:
Element Pattern Type (Voltage):

179

[Isotropie]

Shape Factors:
Pedestal Level: v_ped (dB) -100
Angle Scale factor: k 1.0
Exponent: x 1.0

Steering Angle (deg ACS) 0.0
Number of elements 14
Spacing / Wavelength 0.5
Amplitude Error RMS (dB) 0.00000000
Phase Error RMS (dB) 0.00000000
No. of spatial pattern samples 256

Spatial Pattern Angles:
Start (deg ACS) -180.0
Stop (deg ACS) 180.0

PMAntPatWin3:
Element Pattern Type (Voltage):

[Isotropie]

Shape Factors:
Pedestal Level: v_ped (dB) -100
Angle Scale factor: k 1.0
Exponent: x 1.0

Steering Angle (deg ACS) 0.0
Number of elements 24
Spacing / Wavelength 0.5
Amplitude Error RMS (dB) 0.00000000
Phase Error RMS (dB) 0.00000000
No. of spatial pattern samples 256

Spatial Pattern Angles:
Start (deg ACS) -90.0
Stop (deg ACS) 90.0

Normalizel:
<no parameters>

Normalize2:
<no parameters>

Normalize3:
<no parameters>

RcvAnt:
Receive Azimuth Parameters:

Mechanical boresight Angle (deg PCS) 90.0
Number of Azimuth Channels 14

180

Element Spacing / Wavelength Ratio 0.5

Receive Elevation Parameters:
Mechanical Boresight Angle (deg PCS) 0.0

Number of Elevation Channels 1
Element Spacing / Wavelength Ratio 0.5

Angular Rotation Rate (RPM)

Peak Aperture Gain (dB)

Aperture Efficiency

X Aperture displacement (M)

Y Aperture displacement (M)
Z Aperture displacement (M)

XmtPlat:

Reference to Receive Platform:

Range (km)
Azimuth (deg GSCS)
Platform Altitude (km)

Heading (Deg GSCS)

Speed (meters/Sec)

Roll Angle (Deg.)

Pitch Angle (Deg.)

Yaw Angle (Deg.)

0.0

17.5

1.000000000

0.0

0.0

0.0

0.0

0.0
0.0384

270.0

172.5

0.0

0.0

0.0

[AGL]

Transmitter Displacement:

X: 0 Y: 0 Z: 0

XmtAnt:
Transmit Mechanical Boresight Angle (Deg PCS)

Azimuth: 90.0
Elevation: 0.0

Peak Aperture Gain (dB) 29.0
Aperture Efficiency 1.0000000

Aperture Phase Center Location

DX Displacement (M) 0.0

DY Displacement (M) 0.0

DZ Displacement (M) 0.0

XmtWave:

Transmit Pulse Modulation Type: [LFM]

Chirp direction [up]

General Parameters:

Peak Transmit Power (KW) 86.3233

Center Frequency (GHZ) 0.435

Pulse Length (Usec) 50.0

Pulse Repitition (Hz) 1000.0

181

Number of pulses 18

Polarization: [HH Horizontal]

Additional Parameters for:
LFM Waveform: Barker Waveform:
Transmit Banwidth (MHZ) 0.5
Phase Droop (DEG) 0.0 No. of Layers (1 or 2) 1
Phase Jitter (DEG) 0.0 Inner Barker Code, req'd 5
Phase Offset (DEG) 0.0 Outer Barker Code, opt 5
Waveform Delay (Usec) 0.0 (Legal Codes are: 2,3,4,5,7,11 and 13)

Target1:
Target ID: TARGET 1

Target Parameters:
Range to Target (KM) 60.0
Azimuth Angle (Deg GSCS) 0.0
Target Altitude (KM) 2.50731 [MSL]
Target Heading (Deg. GSCS) -65.6
Target Speed (M/SEC) 200.0
Radar Cross Section (dBsm) 5.0
RCS Swerling Model 0
RNG Seed 0 (0 => process ID)

Target2:
Target ID: TARGET 2

Target Parameters:
Range to Target (KM) 67.5
Azimuth Angle (Deg GSCS) 359.0
Target Altitude (KM) 2.50731 [MSL]
Target Heading (Deg. GSCS) 0.0
Target Speed (M/SEC) 151.0
Radar Cross Section (dBsm) -10.0
RCS Swerling Model 0
RNG Seed 0 (0 => process ID)

CltrMaps:
Clutter Strength [normal (mean)]

Season: [summer]

Terrain Spatial Backscatter Fluctuations [exponential]

Sea Spatial Backscatter Fluctuations [exponential]

Sea State Index 1
RNG seed 0 (0 => use process ID)

CltrPlse:

182

Control Parameters:

Data Cube coordinates:

Start Pulse Index 0

Stop Pulse Index 0

Start Channel Index 0
Stop Channel Index 0 (0 = all)

Terrain Temporal Backscatter Fluctuations:
[non-fluctuat ing]

Terrain Decorrelation time (1/e, msec) 500.0

Sea Temporal Backscatter Fluctuations:
[non-fluctuat ing]
Sea Decorrelation Time (1/e, msec) 500.0

RNG seed 0 (0 => process ID)

selected pulse 1

BNJaml:

Jammer ID: JAMMER 1

Control Parameters:

Location Parameters: rel to receiver platform:
Slant Range to Jammer (KM) 100.0
Azimuth Angle (Deg GSCS) 310.0

Jammer Altitude (KM) 1.0 [AGL]
Jammer Heading (Deg GSCS) 0.0

Jammer Speed (M/SEC) 100.0

Operational Parameters:

Radiated Power (ERP dBw) 30.0

Transmit Frequency (GHz) 0.435

Jammer Bandwidth (MHz) 100.0
Jammer Period (MSEC) 1.0

Jammer Duty Factor 0.25

Jammer Delay (periods) 0.00000000

RNG Seed 0 (0 => process ID)

BNJam2:

Jammer ID: JAMMER 2

Control Parameters:

Location Parameters: rel to receiver platform:
Slant Range to Jammer (KM) 100.0

Azimuth Angle (Deg GSCS) 320.0

Jammer Altitude (KM) 1.0 [AGL]

Jammer Heading (Deg GSCS) 0.0

Jammer Speed (M/SEC) 100.0

183

Operational Parameters:
Radiated Power (ERP dBw) 30.0
Transmit Frequency (GHz) 0.435
Jammer Bandwidth (MHz) 100.0
Jammer Period (MSEC) 1.0
Jammer Duty Factor 0.25
Jammer Delay (periods) 0.00000000

RNG Seed 0 (0 => process ID)

RPESum:
<no parameters>

RcvrNoise:
Receiver Noise Parameters:

Insertion Loss (dB) 1.5
Receiver Gain (dB) 196.0
RMS gain variations (dB) 0.0
Rcvr pre-IF Bandwidth (MHz) 0.8
Rcvr Noise Figure (dB) 5.0
Antenna view Temp (deg K) 200.0
Lossy component Temp (deg K) 290.0
Rcvr Reference Temp, To (deg K) 290.0

RcvrBP:
Filter Bandwidth, 3dB (MHz) 0.2
Stop Band Bandwidth (MHz) 0.6
No. of Freq. (FFT) points 0 (select default)

SignalLevels:
<no parameters>

CNRCalc:
Sys Noise Figure (dB) 5.0

184

6.2 Appendix B - Parameter Settings for Joint Domain Optimum

The parameter settings for Joint Domain Optimum workspace are as follows.

WindowGenl:
Number of points to generate 100
Window Function Type: [Hamming]

PC:
Weighting Domain [TIME]

Matched Filter Selection Mode [Internally Generated]

Internally Generated Weighting Function [WindowGenl.kdf]

Matched Filter Pulse Modulation: [LFM]

Pulse Width 0.0 Bandwidth 0.0 (use transmit numbers)

Chirp Mode [UP]

Extractl:

Starting Indices 1 X 1 X 1
Ending Indices 403 X 16 X 1
Index Increments 1 X 1 X 1

Reshape Data: [OFF]
Array Size 1 x 1 x 1

Motion Comp:

Motion Compensation Frequency: [Use specified] 0.0

MTI:

Number of pulses 3

JDORule:

Range Processing Parameters:

STAP Algorithm Configuration: [Adaptive Array]

Covariance Estimation (Secondary data set)

[Use all bins]

Beamforming (primary data set)
[Use all bins]

Covar:

<no params>

DiagLoad:
Diagonal Load Level (dB) -50.0

With respect to: [Diagonal Peak]

InvCovar:

Inverse Algorithm:
[CSVD Algorithm]

185

[Use N Largest Eigenvalues]

No. of eigenvalues 0

WindowGen2:
Number of points to generate 14
Window function type: [Taylor]

Peak Sidelobe Level (dB) 30.0

NBAR 5

WindowGen3:

Number of points to generate 1

Window function type: [Rectangular]

Start index 1

Stop index 1

WindowGen4:
Number of points to generate 14
Window function type: [Dolph Chebyshev]

Peak Sidelobe level (dB) 80.0

SteerVector:
[Doppler filter weights] WindowGen4

Steer Vec Az Angle (deg) 0.0
Steer Vec El Angle (deg) 0.0

STAPWgts:
RPE Data: JDGRule.kdf
InverseCovariance: InvCovar.kdf

SteeringVector: SteerVector.kdf

Weight Scaling Option: [Min Variance]

BeamForm:
<no parameters>

Floor:
Specification of Floor Value:

[limit to dB, preserve phase]

dB value 70.0

SignalLevels:
<no parameters>

Extract2:
Starting Indices 1 X 13 X 1

Ending Indices 403 X 13 X 1

Index Increments 1 X 0 X 0

Reshape Data: [OFF]

186

Array size:

Extract3:

Starting Indices 1 X 10 X 1
Ending Indices 403 X 10 X 1
Index Increments 1 X 0 X 0

Reshape Data: [OFF]

Array size: 1 x 1

CA_CFAR:
CFAR Parameters:

Range Dimension:

No. Guard Bins (each side) 5

No. Window Bins (each side) 20

Doppler Dimension:

No. Guard Bins (each side) 3

No. Window Bins (each side) 5

Wrap Option:

[1-Doppler Wrap]

G0_CFAR:

CFAR Parameters:

Range Dimension:

No. Guard Bins (each side) 5

No. Window Bins (each side) 20

Doppler Dimension:

No. Guard Bins (each side) 3

No. Window Bins (each side) 5

Wrap Option:
[1-Doppler Wrap]

0S.CFAR:
CFAR Parameters:

Range Dimension:

No. Guard Bins (each side) 5

No. Window Bins (each side) 20

Doppler Dimension:

No. Guard Bins (each side) 3
No. Window Bins (each side) 5

Wrap Option:
[1-Doppler Wrap]

Order Statistic: 3

187

TM_CFAR:
CFAR Parameters:
Range Dimension:

No. Guard Bins (each side) 5
No. Window Bins (each side) 20

Doppler Dimension:
No. Guard Bins (each side) 3

No. Window Bins (each side) 5

Wrap Option:

[1-Doppler Wrap]

Number of Cells Excised:

No. of Smallest Valued Cells 0

No. of Largest Valued Cells 3

Detectl:
Threshold Multiplier Specification:

[Analytical]

Pfa: 0.00001

K: 0.0

Detect2:
Threshold Multiplier Specification:

[Analytical]
Pfa: 0.00001
K: 0.0

Detect3:
Threshold Multiplier Specification:

[Analytical]
Pfa: 0.00001
K: 0.0

Detect4:
Threshold Multiplier Specification:

[Analytical]
Pfa: 0.00001
K: 0.0

188

6.3 Appendix C - Parameter Settings for the Physical Model

The parameter settings for the physical model workspace are as follows.

PMSetup:
Experiment Name: RLSTAP ADT DEMONSTRATION

CPI number: 1

Radar Operational Range:
Min Operational Range (km) 6.45

Max Operational Range (km) 110.0

Azimuth Simulation Parameters:
Coordinate System [ACS]

Azimuth Start Angle (deg) -180.0

Azimuth Stop Angle (deg) 180.0

No. of Azimuth Cells 256

Doppler parameters:
No. of freq bins over the PRF 256

PMEnv:
Model Initialization parameters:

Specify Map or Simulated Clutter Type:

[ON] Site Specific Clutter

DMA/USGS Input File ./Maps2/wsmr.cvr

[OFF] Simulated Homogeneous Clutter

[ON] Agricultural

Curved Earth multiplier k: 1.3333

RcvPlat:
Platform Latitude:

Deg 33.7514 Min: 0.0 Sec 0.0

Platform Longitude:

Deg -106.3720 Min: 0.0 Sec: 0.0

Platform Altitude (km) 0.0384 [AGL]

Platform Heading (deg GSCS) 270.0

Platform Speed (m/sec) 172.0

Platform Roll Angle (Deg) 0.0

Platform Pitch Angle (Deg) 0.0

Platform Yaw Angle (deg) 0.0

Receiver Phase Center Displacement:

X 0.0 Y 0.0 Z 0.0

Receive Data Sampling Freq: (MHz) 1.0

189

AntPatCos:
Pedestal level: v_ped (dB) -100

Angle scale factor: k 1.0

Exponent: x 1.0

No. of Spatial Pattern Samples 256

Spatial Pattern Angles:

Start (deg ACS) -180.0
Stop (deg ACS) 180.0

WindowGenl:
Number of points to generate 24
Window Function Type [Dolph Chebyshev]

Peak Sidelobe Level (dB) 32.5

WindowGen2:
Number of points to generate 14
Window Function Type [Rectangular]

Start Index 1

Stop Index 14

WindowGen3:
Number of points to generate 14
Window Function Type [Rectangular]

Start Index 1

Stop Index 14

PMAntPatWinl:
Element Pattern Type (Voltage):

[Isotropie]

Shape Factors:
Pedestal Level: v_ped (dB) -100
Angle Scale factor: k 1.0
Exponent: x 1.0

Steering Angle (deg ACS) 0.0

Number of elements 24

Spacing / Wavelength 0.5
Amplitude Error RMS (dB) 0.00000000
Phase Error RMS (dB) 0.00000000

No. of spatial pattern samples 256

Spatial Pattern Angles:

Start (deg ACS) -90.0
Stop (deg ACS) 90.0

PMAntPatWin2:
Element Pattern Type (Voltage):

[Isotropie]

190

Shape Factors:

Pedestal Level: v_ped (dB) -100

Angle Scale factor: k 1.0

Exponent: x 1.0

Steering Angle (deg ACS) 0.0

Number of elements 14

Spacing / Wavelength 0.5
Amplitude Error RMS (dB) 0.00000000

Phase Error RMS (dB) 0.00000000

No. of spatial pattern samples 256

Spatial Pattern Angles:
Start (deg ACS) -180.0

Stop (deg ACS) 180.0

PMAntPatWin3:

Element Pattern Type (Voltage):
[Isotropie]

Shape Factors:

Pedestal Level: v_ped (dB) -100

Angle Scale factor: k 1.0

Exponent: x 1.0

Steering Angle (deg ACS) 0.0

Number of elements 24

Spacing / Wavelength 0.5

Amplitude Error RMS (dB) 0.00000000
Phase Error RMS (dB) 0.00000000

No. of spatial pattern samples 256

Spatial Pattern Angles:

Start (deg ACS) -90.0
Stop (deg ACS) 90.0

Normalizel:
<no parameters>

Normalize2:
<no parameters>

Normalize3:

<no parameters>

RcvAnt:

Receive Azimuth Parameters:

Mechanical boresight Angle (deg PCS) 90.0
Number of Azimuth Channels 14

Element Spacing / Wavelength Ratio 0.5

191

Receive Elevation Parameters:
Mechanical Boresight Angle (deg PCS) 0.0
Number of Elevation Channels 1
Element Spacing / Wavelength Ratio 0.5

Angular Rotation Rate (RPM)
Peak Aperture Gain (dB)
Aperture Efficiency
X Aperture displacement (M)
Y Aperture displacement (M)
Z Aperture displacement (M)

XmtPlat:
Reference to Receive Platform:

Range (km)
Azimuth (deg GSCS)
Platform Altitude (km)
Heading (Deg GSCS)
Speed (meters/Sec)
Roll Angle (Deg.)
Pitch Angle (Deg.)
Yaw Angle (Deg.)

0.0
17.5
1.000000000
0.0
0.0
0.0

0.0
0.0
0.0384

270.0
172.5
0.0
0.0
0.0

[AGL]

Transmitter Displacement:
X: 0 Y: 0 Z: 0

XmtAnt:
Transmit Mechanical Boresight Angle (Deg PCS);

Azimuth: 90.0
Elevation: 0.0

Peak Aperture Gain (dB)
Aperture Efficiency

Aperture Phase Center Location

DX Displacement (M) 0.0
DY Displacement (M) 0.0
DZ Displacement (M) 0.0

29.0
1.0000000

XmtWave:
Transmit Pulse Modulation Type: [LFM]

Chirp direction [up]

General Parameters:
Peak Transmit Power (KW) 86.3233
Center Frequency (GHZ) 0.435
Pulse Length (Usec) 50.0
Pulse Repitition (Hz) 1000.0
Number of pulses 18

192

Polarization: [HH Horizontal]

Additional Parameters for:
LFH Waveform:
Transmit Banwidth (MHZ) 0.5
Phase Droop (DEG) 0.0
Phase Jitter (DEG) 0.0
Phase Offset (DEG) 0.0
Waveform Delay (Usec) 0.0

Barker Waveform:

No. of Layers (1 or 2) 1
Inner Barker Code, req'd 5
Outer Barker Code, opt 5
(Legal Codes are: 2,3,4,5,7,11 and 13)

Target1:
Target ID: TARGET 1

Target Parameters:
Range to Target (KM) 60.0
Azimuth Angle (Deg GSCS) 0.0
Target Altitude (KM) 2.50731 [MSL]
Target Heading (Deg. GSCS) -65.6
Target Speed (M/SEC) 200.0
Radar Cross Section (dBsm) 5.0
RCS Swerling Model 0
RNG Seed 0 (0 => process ID)

Target2:
Target ID: TARGET 2

Target Parameters:
Range to Target (KM) 67.5
Azimuth Angle (Deg GSCS) 359.0
Target Altitude (KM) 2.50731 [MSL]
Target Heading (Deg. GSCS) 0.0
Target Speed (M/SEC) 151.0
Radar Cross Section (dBsm) -10.0
RCS Swerling Model 0
RNG Seed 0 (0 => process ID)

CltrMaps:
Clutter Strength [normal (mean)]

Season: [summer]

Terrain Spatial Backscatter Fluctuations [exponential]

Sea Spatial Backscatter Fluctuations [exponential]

1 Sea State Index
RNG seed 0 (0 => use process ID)

CltrPlse:
Control Parameters:
Data Cube coordinates:

193

Start Pulse Index 0

Stop Pulse Index 0

Start Channel Index 0

Stop Channel Index 0 (0 = all)

Terrain Temporal Backscatter Fluctuations:

[non-fluctuating]

Terrain Decorrelation time (1/e, msec) 500.0

Sea Temporal Backscatter Fluctuations:

[non-fluctuat ing]

Sea Decorrelation Time (1/e, msec) 500.0

RNG seed 0 (0 => process ID)

selected pulse 1

BNJaml:
Jammer ID: JAMMER 1

Control Parameters:
Location Parameters: rel to receiver platform:

Slant Range to Jammer (KM) 100

194

13. Enabling Online Help and Manual Pages
for Khoros Pro 2.2

Paul DeLauretis
Maui Community College (MCC)

D.J. Fabozzi
Maui High Performance Computing Center (MHPCC)

21 August, 1998

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in die Khoros
1.5 environment of the RLSTAP/ADT and MATLAB.

195

ENABLING ONLINE HELP AND MANUAL PAGES
FOR KHOROS PRO 2.2

Paul De Lauretis
Maui Community College

edoc@maui.net

D.J. Fabozzi
Maui High Performance Computing Center

fabozzi@mhpcc.edu

August 21, 1998

ABSTRACT

This document describes the procedures to build and install the Khoros Pro 2.2 manual package on
the Maui High Performance Computing Center (MHPCC) AIX version 4.2 system. This project was born
through the discovery that during the testing of the Rome Laboratory Space-Time Adaptive Processing
High Performance Computing (RLSTAP_HPC) utilities, though the utilities functioned properly, the
manual pages did not. This is function of the parent environment, Khoros2.2, not being supported for the
IBM ATX system. As a result, the installation of the KhorosPro 2.2 manual page facility is nontrivial and
requires many 3rd party products including GNU's grof f-1.11, geqn, and gtbl text formatting
utilities. Because of the extensive configuration involved in this process, this document describes the
details of the process and utilities required for the generation of Khoros2.2 manual capability. Following
this report are tables of related paths, commands, and locations of required 3rd party tools.

INTRODUCTION

The use of Khoros manual pages are necessary because of the significant quantity of information
accompany its 200+ toolboxes. Unfortunately, Khoros is not presently supported on the IBM ATX
platform so each ATX distribution requires a complete build from source code. Though the build of
Khoros is somewhat straightforward, the build of the Khoros documentation or "manual" facility involves
numerous additional 3rd party utilities. This document steps through the build and installation of those
utilities and as well as provides additional information to assist other IBM and non-supported platform
developers who wish to build the Khoros Pro 2.2 manual facility.

Many utilities are necessary to execute Khoros Pro 2.2 manual pages that are not included with the
Khoros distribution. These include: sed-2.05.tar.gz, autoconf-2.12.tar.gz, m4-1.4.tar.gz, automake-
1.3.tar.gz, make-3.76.1.tar.gz, bison-l.25.tar.gz, gawk-3.0.3.tar.gz, grof f-1.1 la.tar.gz. The process
of building manual page capability involved installing and building these utilities in the listed order.
Following this was the task of generating the binary description files for typewriter, or ascii type devices
via the makedev and move the generated device distribution to a location pointed to by the
BOOTSTRAP variable. This report discusses these configuration details in building these utilities for the
KhorosPro 2.2 manual utility.

BACKGROUND

196

KhorosPro 2.2 is the flagship product of Khoral Reasearch Inc. of Albuquerque, NM. Khoros
includes a toolbox of over 200 mathematical and data processing routines as well as a visual programming
environment "Cantata". The Khoros utility which processes manual pages for display is entitled "kman"
which in turn requires the GNU product grof f.

Text formatting
A brief review of text formatting will introduce manual page generation. As mentioned, the

Khoros man pages execute via the "kman" utility which in turn invokes grof f. The formatter grof f
takes input files such as shown in figure 1, below.

TH COFFEE 1 "1 July 98"
.SH NAME
coffee \- Control remote coffee machine
.SH SYNOPSIS
\fBcoffee\fP [-h | -b][-t \fItype\fP] \fIamount\fP
.SH DESCRIPTION
\flcoffee\fP queues a request to the remote coffee machine at the device \fß/dev/cfO\fR.
The required \fIamount\fP arguments specifies the number of cups, generally between 0
and 15 on ISO standard coffee machines.
.SS Options
.TP
\fB-b\fP
Burn coffee. Especially useful when executing \flcoffee\fP on behalf of your boss.
.TP
\fB-t\fItype\fP
Specify the type of coffee to brew, where \fItype\fP is one of \fBcolombian\fP,
\ffiregular\fP, or \fBdecaf\fP.
.SH FILES
.TP
uT/dev/cfO\fR
The remote coffee machine device
.SH "SEE ALSO"
milk(5), sugar(5)
.SHBUGS
May require human intervention if coffee supply is exhausted.

Figure 1

When processed with the following command,

groff -Tascii -man coffee.man

produces the output as shown in Figure 2.

197

COFFEE(l) (1 July 98) COFFEE(l)

NAME
coffee - Control remote coffee machine

SYNOPSIS
coffee [-h | -b] [-t type] amount

DESCRIPTION
coffee queues a request to the remote coffee machine at the device /dev/cfO. The
required amount argument specifies the number of cups, generally between 0 and
15 on ISO standard coffee machines.

Options
-h Brew hot coffee. Cold is the default.

-b Burn coffee. Especially useful when executing coffee on behalf of your
boss.

-ttype
Specify the type of coffee to brew, where type is one of Colombian, regular,
or decaf.

FILES
/dev/cfO

The remote coffee machine device

SEE ALSO
milk(5), sugar(5)

BUGS
May require human intervention if coffee supply is exhausted.

Figure 2

Utilities
As mentioned, the installation of groff requires the operation of numerous utilities which are

available independent of KhorosPro. Though some were already installed on the MHPGC system, many
of these utilities required specific version and additional attachments. These additional utilities are
summarized below:

- 198

sed-2.05
sed is a common tool used for stream-text editing, having ed-like syntax. Sed can also
operate on files using a script in edit lines according to commands and.

autoconf-2.12
Autoconf is an extensible package of m4 macros that produce shell scripts to
automatically configure software source code packages. These scripts can adapt the
packages to many kinds of UNIX-like systems without manual user intervention. It creates
a configuration script for a package from a template file that lists the operating system
features that the package can use in the form of m4 macro calls.

m4-1.4
GNU's m4 is an implementation of the traditional UNIX macro processor. It is mostly
SVR4 compatible, although it has some extensions to BSD unix (for example, handling
more than nine positional parameters to macros). m4 has built-in functions for including
files, running shell commands, doing arithmetic, etc. autoconf requires GNU's m4 for
generating configure scripts, but not for running them.

automake-1.3
automake is a Makefile generator. It was inspired by the 4.4BSD make and include files,
but aims to be portable and to conform to the GNU standards for makefile variables and
targets, automake is a Perl script and requires Makefile.am inputfiles and generates
Makefile.in output files to be used with autoconf. The automake package also
includes the aclocal program which is required to make to execute properly.

make-3.16.1
The make utility determines performs robust compilation of large software packages.
GNU's make was utilized because IBM's make did not recognize the "FORCE" rule.
Additional details follow in the "Approach" section of this document.

bison-1.25
Bison is a parser generator for converting a grammatical specification of a language into
a parser that will parse statements in the language. A grammar is written which specifies
the syntax of the language. Bison can then be used to warn of errors and ambiguities in
the grammar. It should be upwardly compatible with input files designed for yacc. It
supports both traditional single-letter options and mnemonic long option names.

gawk-3.0.3
gawk is the GNU implementation of the AWK programming language. The AWK
language is built upon C syntax and includes the regular expression search facilities of grep
and add in the advanced string and array handling features that are missing from C. Gawk
also provides more recent Bell Labs AWK extensions, and some GNU-specific extensions.

grof f-1.11
grof f is GNU's implementation of nroff and troff document formatting system. It runs
gtroff, GNU's version of troff, and all preprocessors and postprocessors in order and with
the appropriate options. It includes several extended features and drivers for a number of
printing devices. Grof f is capable of producing documents, articles, and formatting
UNIX manual pages. The grof f package also contains the required geqn and gtbl
formatting tools.

The interdependencies of the above tools accentuated this effort. For instance GNU's autoconf is to
be used to run the configure process for most GNU utilities. Further, autoconf in turn requires m4 and

199

automake to build correctly. In addition, GNU's make requires automake and autoconf and
finally grof f requires make as well as bison, sed, and gawk. The remainder of this report discusses
these dependencies in the context of the build and installation process on the IBM SP environment.

APPROACH

The installation of GNU's grof f-1.11 was undertaken through the following steps. The
approach was straightforward: obtain and install all the necessary third party products in a user's directory
rather than the system "root" locations.

installbsd

As on of the objectives of this exercise was to perform the installation of these utilities without
system or "root" privelege, the installbsd utility was employed to installs files to specified locations
by adjusting the ownership option of the Makefile's INSTALL macro to show group ownership. A
unique property of the installbsd command is its ability to remove the binary destination file. This
removal feature makes installbsd ideal for use in Makefiles as the continual rebuilding of
dependency files requires the most recently built version of a binary executable file to be present.

The syntax of the installbsd command is as follows:

<path >/installbsd [-c] [-g group] [-m Mode] [-o owner
] [-s] BinaryFile Destination

And the value assigned to the Makefile's macro was as follows:

INSTALL=/usr/bin/installbsd -c -g <group>

Here the group ownership of the target directory was used as <group>.

sed
The GNU version of sed was required over the ADC version due to a specific command reference.

The ADC version sed was unable to recognize "@g@" in the neqn.sh file with the value of g given in the
Makefile. As a result sed-2.05 was downloaded and used in this exercise.

make
GNU's make is needed because of the use of "phony targets" which are not supported by the ADC

version of make. By using the FORCE identifier rather than the GNU specific "PHONY" identifier, a
rebuild is forced. A "phony target" is one that is not really the name of a file but rather a name for some
commands to be executed when you make an explicit request. There are two reasons to use a phony target:
to avoid a conflict with a file of the same name, and to improve performance.

For instance, if you write a rule whose commands will not create the target file, the commands will
be executed every time the target comes up for remaking. Here is an example:

clean:
rm *.o temp

200

Because the rm command does not create a file named 'clean', probably no such file will ever
exist. Therefore, the rm command will be executed every time you say "make clean1. The phony target
will cease to work if anything ever does create a file named 'clean' in this directory. Since it has no
dependencies, the file 'clean' would inevitably be considered up to date, and its commands would not be
executed. To avoid this problem, you can explicitly declare the target to be phony, using the special target
PHONY as follows:

.PHONY : clean
clean:

rm *.o temp

Once this is done, "make clean' will run the commands regardless of whether there is a file named "clean1.
Utilizing "FORCE" yields equivalent results:

clean: FORCE
rm $ (objects)

FORCE:

Here the target "FORCE' satisfies the special conditions so the target "clean' that depends on it is
forced to run its commands. There is nothing special about the name "FORCE1, but that is one name
commonly used this way. Using "PHONY' is more explicit and more efficient but other versions of make
do not support "PHONY".

If a rule has no dependencies or commands, and the target of the rule is a nonexistent file, then
make imagines this target to have been updated whenever its rule is run. This implies that all targets
depending on this one will always have their commands run.

Since it knows that phony targets do not name actual files that could be remade from other files,
make skips the implicit rule search for phony targets (see section Using Implicit Rules). This is why
declaring a target phony is good for performance, even if you are not worried about the actual file
existing. Thus, you first write the line that states that clean is a phony target, then you write the rule, like
this:

.PHONY: clean

A phony target should not be a dependency of a real target file. If it is, its commands are run
every time make goes to update that file. As long as a phony target is never a dependency of a real target,
the phony target commands will be executed only when the phony target is a specified goal.

After GNU make was properly installed, new makefiles were created for the utilities bison,
gawk, and groff-1.11.

grof f
The installation of make and the other utilities was followed by the build of grof f-1.11.

Grof f was built with c rather than c++ because the egcs-1.0.3a package which includes support for most
of the current c++ specification, including template and exception handling, was not resident on the
system and difficult to externally obtain.

201

./configure — srcdir=/s/edocstud/grof f-1.11
prefix=/s/edocstud

-prefix=/s/edocstud/grof f-1.11 —exec-

grof f then built without error

DESCout file
It was discovered next that even though groff was functional, Khoros' kman required an additional

font configuration file which contains a brief description of the device which is needed for the use of a
typewriter or ascii type device. As the file is not resident on the MHPCC's /usr/lib/font directory,
makedev was executed and the DESCout binary file and the four relevant font binary files were built
according to the following command:

makedev ./DESC

ONLINE HELP
Following the completion of these steps, the execution of kman on the help files produced the

manual page interface, as shown in Figure 3.

PROGRAM PROGRAM SARcompress - Compress SAR data.
DESCRIPTION DESCRIPTION The kroutlne SARcompress Inputs a SAR
(In Tact any) data tile, compresses It. and outputs a compressed
data file. '
PANE ARGUMENTS PANE ARGUMENTS

"SAR data Input? (required Infile)
SAR Input data object

"Compressed output" «(required outflle) ■
Resulting output dataobject

. "Algorithm" (optional list)
cdmpresslohälgdrltbm choice ,

1 "Huffman*. ■ • - .
2 "Arithmetic-

. * ' . tdafault - 1 "Huirman"] - . - . ■ ' " . " . - •

EXAMPLES EXAMPLES .'■"".'
ISEE ALSO SEEALSO- " - . . - - ...-.-.. ... -
»RESTRICTIONS ^"RESTRICTIONS
PREFERENCES REFERENCES -" ,' ." .■-•./•-.
COPYRIGHT* COPYRIGHT Copyright (C)19ä7, University of New Mexi-
co. All rights reserved.

>■- v »>;?*f«?

/s/crestY o/SARco«npross/»ielp/SARcompressJilp

Figure 3

202

SUMMARY

Khoros manual pages are necessary because of amount of information accompanying the Cantata
utility. Developers as well as users of Cantata require the help utility for both execution as well as
development of new modules. As Khoros is not presently supported on the IBM AIX platform, each
distribution to an AIX platform involves a compilation and build of the Khoros distribution. Though the
build of Khoros system is straightforward the build of the Khoros manual facility is not. This document
details the steps involved and the required external software to assist other IBM and non-supported
platform developers who wish to work the Khoros Pro 2.2.

203

AITKNDIX

I ABl.l OF RKLAII I) PATHS

iiiijjJ-'-f^;-'■;".-:-■■■ -.. ■■;::^y^i-' .*':::*A:l9i£äMU!2j&.^xtt;^S0K^c--*: ^^^s'^.'c;;.^
Khoros2.2 3"1 Party Requirements flp.khoral.com/pub/khoros/Khoros2/rcleasc/

insiallguide.tar.gz
CM' Software ftp. gnu.org/puh/gnu
Target Director) 's./edocsnid/
Tools (bin) Directory Vedocstud/bin
C Compiler Location /usr/bin
C++ Compiler Location /usr/nfs/bin
DESC File Location /s/cdocstud/grof f-1.1 1/sharc/grof f /font/devascii/
Klioros2.2 /usr/nfs/packages/khoros2.2

TABLE OF RELATED COMMANDS

configure

installbsd macro
CXX env. variable
PATH env. variable
grof f test
makedev
symbolic link

BOOTSTRAP env.
variable

./configure -srcdir=/s/edocstud/<build dir> —prefix=/s/edocstud/<build dir>
—exec-prefix=/s/edocstud
INSTALL=/usr/bin/installbsd -c -g asp

export CXX=/usr/bin7cc
export PATH=/s/edocstud/bin:/usr/bin:/usr/nfs/bin:$PATH
grof f -Tascii -man coffee.man
makedev /s/edocstud/grof f-111/share/grof f/font/devascii/DESC
In -s /usr/nfs/packages/khoros2.2/bootstrap/repos
/s/edocstud/grof f-1.11/share/grof f/font/repos
export BOOTSTRAP=/s/edocstud/grof f-1.11/share/grof f/font

TABLE OF TOOL LOCATIONS
- All tools are located at ftp.gnu.org

MMsmmum &UUH iSHi^^^^i^fv^c^^^^^

sed-2.05. Free Software Foundation, Inc /pub/gnu/sed2.05.tar.gz

autoconf-2.12 David MacKenzie djm@catapult.va.pubnix.com /pub/gnu/autoconf-2.12.tar.gz

m4-1.4 Free Software Foundation, Inc. /pub/gnu/m4-1.4.tar.gz

automake-1.3 David MacKenzie djm@catapult.va.pubnix.com /pub/gnu/automake-1.3.tar.gz

make-3.76.1 Paul D. Smith <psmith@gnu.ai.mit.edu>. /pub/gnu/make-3.76.1 .tar.gz

groff-1.11 James Clark <jjc@jclark.com> /pub/gnu/groff-1.11 a.tar.gz

gawk-3.0.3 Free Software Foundation, Inc. /pub/gnu/gawk-3.0.3.tar.gz

bison-1.25 Free Software Foundation, Inc. /pub/gnu/bison-1.25.tar.gz

204

14. An Examination of Parallelism with
MultiMATLAB

Matthew Green
University of Massachusetts, Amherst

D.J. Fabozzi
Maui High Performance Computing Center (MHPCC)

24 August, 1998

To Support Contract Statement of Work Subtask 4.1.4.1, Investigate and
implement fine grain parallelization over the MHPCC SP-2 nodes in the Khoros"
1.5 environment of the RLSTAP/ADT and MATLAB.

An Investigation of Parallelization of Code Written in MATLAB

DJ. Fabozzi II, Blaise Barney
Maui High Performance Computing Center

fabozzi@mhpcc.edu, blaise@mhpcc.edu

Peter Young
Environmental Research Institute of Michigan

young @ erim-int.com

Paul De Lauretis, Melody Bohn
Maui Community College

edoc2@aloha.net, kas@maui.net

Mathew Green
University of Massachusetts

mgreen@cs.umass.edu

ABSTRACT

The MathWorks' MATLAB is a very popular tool among scientists and engineers due
to its rich mathematical library set, flexibility, and ease of use. However, its interpretive
operation is an obstacle to high performance on either embedded processors or Massively
Parallel Processors. As an alternative to the manual translation of MATLAB syntax to a
compilable language, there have been a number of utilities which perform language
conversions, integrate parallel libraries into the MATLAB user code, or a combination of
both. It was found that the degree of improvement achieved by each of these developments
was dependent on many factors such as MATLAB code structure, communication interface,
and execution environment. This report reviews the various approaches to improve
MATLAB and further details the results of an on-site evaluation of three third-party utilities.
In particular, the MathWorks MATLAB compiler [1], MultiMATLAB [2], and Real Time
Express [3] utilities were evaluated at the Maui High Performance Computing Center to
examine performance, applicability, availability, and development cost when utilized on a
diverse set of test codes. Following the results of the on-site evaluation, recommendations are
given for both user and utility developers to improve MATLAB computing in a high
performance environment. This work was funded by the Defense Advanced Research
Projects Agency/ Sensor Technology Office (DARPA/STO) under Air Force contract
F30602-95-C-0117.

206

1 INTRODUCTION

MATLAB is a very popular tool among scientists and engineers due to its rich

mathematical library set, flexibility, and ease of use. However, its interpretive operation can

be an obstacle to achieving high performance on Massively Parallel Processors (MPP). As a

result, there have been a number of utilities to assist users in improving MATLAB code

performance on either single or distributed processors through either conversion to compiled

languages, substituting message passing within the MATLAB user code or a combination of

both. The degree of improvement achieved by each of these utilities,- however, depends on

many factors such as MATLAB source code .structure, improvement goal, labor, MATLAB

licenses, and available computing resources. This report surveys the related MATLAB-

based computing techniques and further details the results of the on-site evaluation of three

leading solutions: the MathWorks' MATLAB compiler, Cornell Theory Center's

MultiMATLAB, and Integrated Sensors Incorporated Real Time Express. Each solution was

evaluated against a diverse suite of codes to demonstrate various performance and integration

details.

1.1 Survey Of Related Work

The results of our survey of found that the field of work of improving MATLAB

performance can be classified into three categories:

1. Compiler approaches—utilities which convert MATLAB code to compiled machine

language.

2. Interpretive approaches—utilities which allow MATLAB algorithms to be distributed

and executed within the MATLAB environment on independent processors.

3. "Full Suite" approaches—utilities which convert MATLAB code to compiled code

such as C/C++ and subsequently insert parallel constructs into the generated language.

These are summarized in Table 1:

207

Category D e ve lo pe r Info Approach A va liability

MATCOM

M UlttM AT L
AB

Para He I
T o olbo x

(PT)

R T E xp re ss

L. DeRose. D.
Padua, CSRD,
U n iv e rsity of lllin ois

M alhT ools , Ltd .

M ath W orKs, Inc

Paul L Springer, Jel
P ro p u is iO r,
Laboratory

Anne E . T re te tne n .
C orn e II Theory
Center

Pauca, Liu, et a I.
Wake Forest U .

ntegrated Sensors Translation to C,
M P I

M AT LAB to
F ortran 90
T ra n sla to r

MATLAB to
C/C + +

MATLAB 10
C/C + +

Interpretive H P C

Interpretive H P C I Author

tp ://w eD.mtncsc.wf
Interpretive HPC I u.edu/pub/pt

Reference

vw .csro.uiuc.edu/lalcon/

w w w .m a 1htools.com/

www.matnwo rKs.com/

w w w -
hpc.ipl.nas2.g0v/PS/M AT PA
R/index.htm I

www .tc.cornell.edU/-anne/p
ro lects/M M .html

www.mthcsc.wtu.eau/pt/Dt.h
tm I

COTS http ://w w w.rtexpress.com/ |T ested at MHPCC

reference

V e rsion 2 tested a I
MHPCC

V e rsio n 2.0.1 tested at
MHPCC

re te re nc e

Tesieo at MHPCC

Table 1. Survey of Leading Approaches

1.2 Review Of Evaluated Parallel-MATLAB Utilities

A brief description of the MATLAB test codes will properly introduce the evaluation

results. The test codes were selected based on size, complexity, and code structure. The first

set, referred to as the "Falcon" codes[4], consisted of eleven independent algorithms of 100

lines or less containing data structures of 500 elements or less. The second set of MATLAB

test codes[5] consisted of variations of FFT processing, nested loops, and matrix multiply

operations. The third test code [6] consisted of a Space-Time Adaptive Processing (STAP)

distribution consisting of 47 library routines containing on average 100 lines of code. Where

applicable, each code suite was tested with each third-party utility.

The first utility examined was the MathWorks' MATLAB compiler, which converts

MATLAB code to C/C++. The converter/compiler demonstrated varying success depending

on code style, use of data types (i.e. INTEGER, REAL, COMPLEX, LOGICAL), rank (i.e.

SCALAR, VECTOR, MATRIX) and shape of arrays (i.e. size of each dimension). We found,

for example, the MATLAB compiler data type inference provided speed-up ranging from 1

to 581 on the Falcon codes, depending on the use of complex numbers, "for" loops, and

matrices. However, the MATLAB compiler provided only a negligible.speedup on the STAP

codes because of the strong use of complex numbers and MATLAB library routines. These

as well as other factors including dependency on matrix element access and MATLAB

callback routines are discussed in this report.

The second utility, Cornell Theory Center's MultiMATLAB, allows users to integrate

parallel MEX routines into serial MATLAB programs for multiprocessor execution.

208

Message Passing Interface (MPI)—based parallel routines are called from within the

interpretive MATLAB environment to perform process control, message passing, data

distribution, and arithmetic operations. Though MultiMATLAB allows for the quick

development of parallel MATLAB software, the utility was found to improve algorithm

performance only for data parallel models in which data transfer time is only a small fraction

of the computation time. Our testing revealed that the matrix multiply, FFT, matrix inverse

and eigenvalue test codes all achieved improvement, but the improvement exhibited strong

dependence on the selection of block gathering method.

The most aggressive approach to integrating parallel constructs into MATLAB is

achieved by Integrated Sensors' RTExpress™ (Real-Time Express). RTExpress performs a

conversion of MATLAB source to C followed by the automatic integration of message

passing constructs and parallel libraries. Testing of RTExpress found measurable

improvement for vector operations, FFT's, and data intensive parallel operations but found

that it required a certain amount of training and that it did not perform well on code

containing "for" loops.

While no utility offers a universal solution to improving MATLAB performance, this

report illustrates various factors which influence the performance of MATLAB code in a

High Performance Computing (HPC) environment. This report concludes with

recommendations for both third party utility developers and MATLAB users to improve the

development of future High Performance Computing applications with MATLAB.

Appendix A lists all of the relevant MATLAB source codes used in the testing.

2 COMPILER APPROACHES

The compiler approaches are those that translate the MATLAB syntax to a compilable

language such as C, C++, or Fortran 90. We examined three projects, one from academia and

two from commercial companies.

2.1 FALCON - A MATLAB to Fortran90 Translator

This project involved the use of a translator to convert MATLAB code to Fortran 90.

This project built inference mechanisms to determine functions and variable characteristics

from the MATLAB syntax. Both static and dynamic inference strategies were implemented

209

against a simplified branching model for variable identification properties including type (i.e.

integer, real, complex, or logical), rank (i.e. scalar, vector, or matrix), and shape (i.e. size of

each dimension). Through the use of both forward and backward propagation strategies, the

project achieved results which were not only comparable to hand written Fortran 90

equivalent code but superior to results achieved through the use of the MATLAB compiler.

Some of FALCON'S test parameters are explained. The FALCON project's static

inference mechanism uses a Static Single Assignment (SSA) representation of MATLAB

programs in which each variable is assigned a value by at most one date type. The intrinsic

types of variables are determined individually by the interpreter from the values of the

operands. For non-SSA test code which contained variables whose types which cannot be

determined immediately, such as those near looping assignments, types are temporarily

assigned and resolved through forward and backward analysis of the MATLAB code.

Similarly, rank information is inferred by the examination of the operands as well

during the same compiler pass. Rank determination is very important because if all data types

are converted to the default matrix type, the computational labor to process and manage

matrix data increases significantly in comparison to other inference classes. Lastly, though

shape is found similarly to rank information, it was found to be best inferred through both

static and dynamic examinations. Shape information is influential in code efficiency because

element-wise access to matrices results in the computational overhead of dynamic allocation.

The FALCON project instruments dynamic type and shape inference through the use

of shadow variables and conditional statements that are inserted into the code under test

during execution. Also implemented is the use of a dimension propagation algorithm in

which variable index accesses are counted so as to inform the resulting Fortran version how

to implement memory requests. In other words, it was found that the overhead due to

MATLAB memory requests with each increase in a matrix's size could be minimized if the

final size of the matrix was known early and allocated only once.

The FALCON project tested these algorithms against 10 MATLAB codes which

perform varying computational actions, the results of which are summarized as follows. The

conversion to a compiled language will yield little performance improvement if the

MATLAB code uses mostly complex matrices, spends most of its time performing library

calls and does not perform incremental array indexing. Codes converted to Fortran 90 which

210

utilize scalar variables will be dramatically improved through the use of type inference. The

use of shape inference against these same codes, however, will only improve them

proportional to the number of matrices used. Compiled codes that will experience the greatest

speedup over their MATLAB counterparts are those which utilize non-complex data types

and little use of library routines.

When compared to the Mathwork's MATLAB compiler, the FALCON translator

demonstrated superior performance due to the preallocation of variables and the handling of

small dimension matrix operations.

The disadvantages of the FALCON compiler include support and testing. As this

work is not a commercial product, its support and availability are questionable. Also, it is yet

to be determined how the compiler performs on MATLAB subroutines over 60 lines as well

as on a suite of operational test code.

2.2 MathTooIs' MATCOM - A MATLAB to C/C++ Compiler

MATCOM is a MATLAB to C/C++ compiler, much like the MathWork's compiler.

As with the MathWork's compiler, MATCOM can create MEX files as well as standalone

applications. Regarding the C++ objects produced, MATCOM uses templates "T" and

declares the base object "M" as an instance of the class "T". MATCOM does provide the

global inference of a float data type and does allow global specification of types with

variable names. As of this writing MATCOM contains many features the MathWork's

compiler does not including graphical user interface (GUI) functions (Windows only), sparse

matrix support, multidimensional imaging support, enhanced error reporting of error

location, compilation of S-funcs for Simulink, m-files for RTWLoad/save of V5 mat-files

format, and recursive function search. This product was briefly evaluated at the MHPCC but

was found to have substandard error reporting. Another feature we found useful in

MATCOM was the recursive subroutine search which MATLAB did not perform at the time

of this writing.-For the large STAP distributions the MATCOM compiler recursively

searched all routines that were called by the original function, where the MathWork's

compiler needed to be independently invoked for each function call.

211

2.3 Math Works' MATLAB Compiler

Mathworks, Inc. provides a facility to convert MATLAB code to C language code in

either a standalone or as a MATLAB executable callable from MATLAB. The MathWork's

compiler contains similar inference mechanisms as MATCOM for imputing type information

or matrix handling. The MathWork's compiler VI.2 offered two command line switches (-r

and -i) which perform imputation of data types. The "-i" compiler option generates code that

fixes array size, eliminates boundary checking and type checking. The "-r" switch on the

other hand tells the compiler to convert all data types to real rather than complex. The

MATLAB compiler also has the ability to control the type imputations by specifying

particular MATLAB variables individually through pragmas, which impute on a file basis.

The pragmas also include a %#ivdep switch which tells the compiler to ignore vector

dependencies. The MathWork's compiler also contains three special functions—reallog,

realpow, and realsqrt which are real-only versions of log, .A, and sqrt functions.

The MathWork's compiler contains a library of routines which can be manually

substituted for MATLAB language routines to improve performance over callbacks to the

MATLAB interpreter. However, these libraries were not investigated for this report.

Operation of the MathWork's compiler on small sets of code is straightforward but

the conversion of a full suite of code of requires attention to each called subroutine and more

operator intervention. Utilities were developed to facilitate the use of MATLAB "load,"

"eval," "save," and "input" commands which are not handled by the MathWork's compiler.

Table 2 lists the results of the conversion of the FALCON test suite with the

MathWork's compiler. The performance of the test code after translation through the

MATLAB compiler's in general agreed with both our expectations and with the FALCON

report results.

212

Code
Problem

Size Interpreted mcc mcc -ri * Speedup

AQ
Adaptive Quadrature
usinq S im pson's rule 1x7 9.02 3.05 2.97

CG
Conjugate G radient
m ethod 420x420 14.73 0.33 44.64

FD

Finite D ifference
S olution to Wave
E quation 451x451 1 1 .76 0.45 0.23 51.13

Di
D irichlet M ethod for
Laplace's Equation 40x40 17.45 0.82 0.03 581 .67

Ga

Poisson equation
solved using Galerkin
m ethod 40x40 12.55 0.82 15.3

EC

E uler m ethod to
com pute orbit of a
comet 6240 steps 6.83 2.48 2.75

RK R unqe-K utta m ethod 3200 steps 8.94 7.97 1 .12

IC
Incomplete Cholesky
m atrix factorization 400x400 1 1 .35 0.94 0.24 47.29

3D
G eneration of 3D -
su rface 51x31x21 14.37 5.34 2.69

Table 2. "FALCON" Code Conversion Results

* - ri switches are not applicable for all test codes

In general all test codes yielded speedup through compilation and syntax assumptions

made earlier were consistent. The conversion to a compiled language yielded little

performance improvement if the MATLAB code used complex matrices, library calls and

array indexing. Degrees of improvement are proportional to these primary dependencies.

3 INTERPRETIVE APPROACHES

3.1 Matpar: Parallel Extensions to MATLAB

Of the interpretive approaches which insert the parallel constructs directly in

MATLAB syntax, Matpar[7] incorporates PVM message passing utilities for data movement.

These routines, which provide access to Scalapack, PBLAS, BLAS, and BLACS libraries,

are listed in Table 2.

213

COMMAND ACTION
p_config() Specify parallel computer and quality of nodes

P_add() Matrix add

p_subtract() Matrix subtract

p_bode() Generate frequency response of a matrix

p_delete() Delete a persistent matrix

p_eye() Generate an identity matrix on the server

pjreqresp() Generate frequency response of a matrix

p_inv() Matrix inverse

pJu() LU factorization of a matrix

p_mult() Matrix multiply

p_multtrans() Matrix transpose multiply

p_persist() Keep matrix on remote server

p_pinv() Pseudoinverse

p_qr() QR factorization

p_smult() Scalar matrix multiply

p_solv() Matrix division

p_svd() Single value decomposition

p_trace() Compute trace

Table 3. Available Matpar Commands

Matpar was developed and tested on a variety of architectures including HPExamplar,

SunUltra SPARC, Intel Paragon, and Cray T3-D.

Though Matpar was not tested on site, the documentation indicates that the

implementation does not require multiple MATLAB licenses for each distributed process.

Matpar's limitations, however, are in its limited number of libraries implemented and limited

distribution.

3.2 PT: Parallel Toolbox for MATLAB
Parallel Toolbox (PT)[8] allows distributed MATLAB programs to execute in a

Single Program Multiple Data (SPMD) configuration. PT also uses PVM to implement a

master-slave paradigm for concurrent program execution. Though similar in using PVM, PT

contrasts with Matpar in that it provides both data management and process control. Table 4

lists some of the available PT commands.

214

COMMAND ACTION 1
pt_addEngines() add one or more compute engines

pt_barrier() synchronize members of a group

pt_broadcast() broadcast a matrix to a group

pt_cleanup() cleanup after job failure

pt_delete() Delete a compute engine from a group

pt_erReset() Resets error log file

pt_exit() exit a worker from the group

pt_getinst() determine the instance # from a group

pt_getwid() determine worker id

pt_getsize() get the # of members of a group

pt_hosts() find all hosts where engines are present

ptJoingroupO Enroll a worker in a group

pt_kill() kill PT tasks in PVM

pt_lvgroup() remove worker from a group

pt_mywid() get worker id

pt_send() send a matrix to a worker

pt_recv() receive a matrix from another worker

pt_shutdown() shutdown engines

Table 4. Available Parallel Toolbox Commands

Though PT was not evaluated on-site, the documentation revealed that this

implementation requires MATLAB licenses for each worker node. Lastly, like Matpar, PT

lacks significant distribution.

3.3 MultiMATLAB: MATLAB on Multiple Processors

MultiMATLAB is similar to PT in that it provides data distribution library routines

which are interleaved directly into the original MATLAB source code. MultiMATLAB was

developed on an IBM SP system utilizing the P4 implementation of MPICH for the

underlying communication. Table 5 lists the available MultiMATLAB commands.

215

Most commands can be run only on the master process (process 0).
Commands marked by * can be run on the master process

or on the remote processes (l:Nproc-l).

Start
Interrupt
Abort

Starting and Stopping MultiMATLAB.
Initialize remote processes and begin MultiMATLAB session

- Interrupt MultiMATLAB processes during computation
- Abort MultiMATLAB session remaining in originally
interactive session

- Terminate remote processes and end MultiMATLAB session

*ID
*Nproc
Grid
*Gridsize
*Coord

Process Arrangement and Identification
- Task ID of a process
- Total number of MultiMATLAB processes active
- Arrange the processes in a grid
- Dimensions of the grid of processes
- Coordinates of a process in the grid

Running Commands on Multiple Processes
Evaluate a command on one or more processes

Ü
Collect

faifl

Communication
Send data from one process to another

- Receive data sent from another process
- Determine if communication has been completed
- Synchronize processes
- Put data from the master process onto remote processes
- Put data from remote process onto the master process

Transmit data to all processes using a tree structure^

- Distribute a matrix according to the values of Coord
- Collect a matrix according to the mask created by Distribute
- Shift data between processes

'«S*ft^$**g

Arithmetic
Find the pointwise maximum of matrices on several processes

■ Find the pointwise minimum of matrices on several processes
• Find the pointwise sum of matrices on several processes
■ Find the pointwise product of matrices on several processes

216

Window
Reset |;,
Window
Refresh

Arrange figures in a grid according to function parameters
Reset default window position to MATLAB default
Repaint all current figures

Table 5. MultiMATLAB Commands

MultiMATLAB was evaluated and found to be useful for quick development of

embarrassingly parallel (replication of the same algorithm on blocks of data) and SPMD

parallel routines. The following sections discuss our findings resulting from the migration of

test routines in Table 6 to the MultiMATLAB environment.

Test

Code Description

Problem

Size

Lines

3D Generation of 3D-surface
>fcYxZ=

[51:51x31:31x21:21] 30

MATJNV4 matrix inverse X=Y=[100:800] 43

H-l MATLAB column-wise FFT X=Y=[100:800] 51

Simple MATLAB FFT2 algorithm X=Y=[100:2500] 40

MM Matrix Multiply X=Y=[50:800] 25

Table 6. MultiMATLAB Test Codes

3.3.1 Migrating MATLAB Code to MultiMATLAB and Matrix Multiply

To introduce our findings, the process of migrating source code to MultiMATLAB is

discussed, beginning with our serial matrix multiply example in Figure 1.

% serialMul.m
% This MultiMATLAB M-file serial matrix multiplication
%

217

function z = serialMul (n);

A = randn(n);
B = randn(n);
tic;

for i = 1 : n
forj = 1 : n

C(i,j) = A(i,:)*B(:,j);
end

end
z = toe;

Figure 1. serialMul.m - serial matrix multiplication

Figure 2 illustrates how a master process broadcasts the matrices to the slave

processors and calls a new routine, remMul.m in Figure 3, which performs the partitioned

matrix multiply. As shown, this partitioning is performed on each processor according to

limits set by values of "L" (Lower) and "U" (Upper) which are determined by the child

process environment variable "Nproc." Upon completion, the submatrix computation on all

slave processors in blocks "C" are returned to the master processor.

% matMul.m
% This MultiMATLAB M-file performs matrix multiplication of two (n x n) square
matrices % w/ random entries for scalability timing tests.
function z = matMul (n)
A = randn(n);
B = randn(n);
C = zeros(n);
tic;
Bcast('A*);
Bcast('B');
Bcast('C);

Eval('rernMur);
D = Sum('C);

Figure 2. MultiMATLAB version - Master Processor

218

% remMul.m
%
% Called by matMul.m to perform matrix multiplication on each processor for
% its own slice of the resulting matrix.
%

L = ID * n / Nproc + 1 ;
U = (ID+l)*n/Nproc ;

for i = 1 : n
forj = L:U

C(i,j) = A(i,:)*B(:,j);
end

end

%

% disp('done multiplying remotely')

Figure 3. Slave Processor Execution

The matrix multiply example was easily implemented and found to yield measurable

improvement for matrix sizes exceeding n= 100, as indicated in Figure 4. The top trace

represents the serial performance, the middle trace represents the performance with

MultiMATLAB, and the lowest trace represents the communication overhead from

MultiMATLAB. Other test codes, as discussed in the following sections, yielded varying

results.

Communication delay Matrix multiplication: 4 tsunami batch processors, 13—Jul—1998

•S 20 -

i
10

O SO 100 150 2O0 250 300
Size-square matrix (o mln BroadCast&Sum time In MMLAB), (+ Matlx Multiply)«- Matlx Multiply MMLAB)

Figure 4. Matrix Multiply Performance with MultiMATLAB

219

3.3.2 3D
The "3D" test code generates eigenvectors of 3x3 matrices. Because the computation

load exceeds the communication latency, MultiMATLAB improves the execution as the

number of eigenvector calculations performed grows to 106.

ThreeD Computation Using MultiMATLAB
Comparison of Total Calculation Time Between Processor Groups
High Performance Switch US Mode, Memory >= 512 Megabytes

Processor Configuration
1, 2, A, 6. & 8 processors Number of Eigenvector Calculations

Performed on 3 x 3 Matrices

Figure 5. "3D" Performance with MultiMATLAB

3.3.3 Child Processor Collection Approach and Matrix Inversion

As MATLAB provides a library module for matrix inverse, we developed an

implementation of matrix inverse computation [9] based on the formula:

A1 = l/det(A)*adj(A)

where

det(A) is the matrix determinant of A and adj(A) is the adjoint of A.

However, because the matrix summation here utilized an ordered "for" loop,

performance degraded with increased processors. As our first implementation utilized the

220

MultiMATLAB "Get" command, which orders data collection from child processors, our

example experiences degraded performance, as indicated in Figure 6.

Matrix Inverse Computation Using MultiMATLAB
Comparison of Total Computation Times Between Processor Group»

Ugh Per. Switch US Moos, Memory >« 512 Megabyte»

Processor Conf guraUon
1, 2. 4, 6, & 8 Size of Square Matrix: n x n

Figure 6. Matrix Inverse Performance with MultiMATLAB using "Get"

However, when our algorithm utilized the unordered "Sum" to collect matrix blocks from
child processors, we achieved measured speedup with increased processors, as indicated in
Figure 7.

Comparison of Matrix rnwse Computation Time Using MultiMATLAB
'meiywM* Algorithm Utilizing MultiMATLAB 'Sum* Command

t-ftgh Psriormance Switch US Mods. Memory M 612MB

I
F 1000-

" i ' ' ' " " "" ■"*■

'**'' * - - ' ■ ' ' ■ M

■ ■»•■^--''tnn

Figure 7. Matrix Inverse Performance with MultiMATLAB Using "Sum"

221 ;

3.3.4 Fast Fourier Transform (FFT)
To validate our claim regarding the influence of child collection, we examined two

FFT algorithms, a column-wise and two-dimensional matrix Fast Fourier Transforms.

Though our column-wise algorithm, "Simple FFT," does have speedup at 2 processors, these

experienced similar degradation because of the results gathering approach, as indicated in

Figures 8 and 9.

Simple FFT Computation Using MultiMATL-AB
Comparison o* Tot«t Computation Tinio Rotwoon Procossa Groups

Mto*-i Pef Switch US rvtode. Monioty a— Si 2 MoQADytos

Figure 8. "Simple FFT" Performance with MultiMATLAB

FFT Computation Using MultiMATLAB
Comparison of Total Computation Tima Batwaan Proa««*of Group«

Mian Parformartca Switch US Mooa. Mamory »-- Ö12 Maosbytac

Figure 9. Column-wise 2D FFT Performance with MultiMATLAB

222

In summary, we found MultiMATLAB to be effective for scenarios in which the

algorithm is a data parallel problem, and the developer has many MATLAB licences and

little development time. However, though MultiMATLAB is simple to install and use, it is

not yet commercially supported.

4 FULL SUITE APPROACH - Real Time (RT) Express

4.1 OVERVIEW

RTExpress™ performs automatic compilation to C and parallelization of software

written in MATLAB. Parallelization of the application can be done automatically by

RTExpress, explicitly directed by the developer, or a combination of both.

RTExpress' graphical user interface (GUI) Target Balancing Tool directs the

interaction with the underlying software which control:

• Parallel communications

• Data acquisition and output (I/O)

• Real-time user displays and controls

• Real-time performance monitoring

• Post-mortem analysis

223

RTExpress utilizes and works in conjunction with the MATLAB compiler,

mathematical subroutine libraries, parallel function libraries, BLAS and BLACS libraries, the

native C compiler and MPI. Figure 10 depicts the function flow of the various RTExpress

components.

Third Party-

Performance &>
Visualization

Tools
IS I wrapper

/

Matlab
script

—►
Target _

- Balancing -
Translator -►

Compiler/
Linker

Target
Hardware

Mathworks
Translator

IS I wrapper

=veloped

oped by other

Parallel Function
Library

Vendor
C ompiler

| :;. c. J ISID
MPI

Library

1
Vendor

Libraries
| | Devel

Figure 10. Function Flow of RTE xpress Comp< >nents

4.2 RTExpress - Usage and Dependencies

RTExpress can be used to translate a serial MATLAB application into a parallel

application by several different methods which vary greatly in the amount of developer

knowledge and effort required. They can also vary greatly in the efficiency of the resulting

parallel application. The primary parallel paradigms RTExpress implements are described in

this section.

4.2.1 Automatic Data Parallelism

In accordance with the data parallel model, the developer simply specifies the number

of instances of the executable to be run and allows RTExpress to distribute the work across

the node pool and produce the translated code with all of the necessary parallel constructs for

data parallelism. RTExpress automatically distributes the matrix data and operations

according to the number of instances without any developer interaction.

224

4.2.2 Function /Task Parallelism, Pipelined Parallelism

This involves decomposing a single serial application into multiple modules for

concurrent execution. RTE recognizes lines of code which can be executed concurrently and

partitions code into discreet groups. Each "group" is then viewed as a separate executable

(task Inter-task communications for shared data is handled automatically by RTExpress by

means of its groupimport and groupexport routines. RTExpress allows the

simultaneous incorporation of both data and functional parallelism.

4.3 Evaluation of RTExpress

RTExpress was evaluated on site at the MHPCC in the areas of translation

effectiveness to parallel models, speedup, scalability, portability and robustness. These along

with other characteristics are detailed in this section.

Over a dozen codes were tested with RTExpress of which nine achieved significant

results. Though the remaining codes did not operate under RTE, they did provide valuable

insights into the product's behavior and limitations. A brief description of each of these

codes appears in the Table 7.

Test Code Description #Lines*
tst_icn.m Incomplete Cholesky factorization of matrix. Uses a double nested loop

to compute the incomplete Cholesky factorization of a matrix. Main
feature is use of a multi-typed built-in (sqrt). Problems size: 400x400

33

tst_dirich.m

;:/.-.a~.MC5^s -'-/a■■-""'-•.-■....

Dirichlet solution to Laplace's equation. An iterative method for the
solution to Laplace's equation. An elementary-operation intensive
program which requires element-wise access of grid elements. Problem
size: 41x41

39

tst_finedif.m. Finite difference solution to the wave equation. A numeric
approximation method for the solution of hyperbolic differential
equations. This is an elementary-operation intensive program that
performs indexed updates to a two dimensional grid. Problem size:
451x451

28

lnv.'B' Inverse matrix operation performed on a 2000 x 2000 matrix. The
MATLAB inv () function is used to perform the operation.

8

'loopä'fwf-^^p^i-y Four simple loops, each of which is double nested, where i=2000 and
j=2000. A simple assignment is made for each element in a 2000x2000
matrix.

51

' .-jr'-An: •
2D FFT operations. Using the MATLAB f ft () and if ft () functions
on a 1024x1024 matrix.

24

iilt.m

.* ', '.'irr.'*?... .•' '. -■^•-. Tr ';

Image filtering operations. An input file provides multiple frames of an
initial image. Each frame is comprised of a 278x392 matrix of reals. An
edge detection operation is performed on each frame. 10 frames are
processed.

74

225

rawtoffti:?m",:.-. Doppler Filter algorithm 1 32
rawtofft2;m Doppler Filter algorithm 2 46

* # Lines = number of source code lines minus comment lines. White lines included.

Table 7. RTExpress Test Codes

All timings were performed in "batch" mode to ensure dedicated CPU usage. The

IBM SP nodes used were P2SC, 160 MHz "thin" nodes with 512 MB of memory (2 x 256

MB memory cards). Data cache was 64 KB with 128 byte cache lines. Results shown are the

average of a minimum of five independent runs per code. The MATLAB "tic" and "toe" calls

were used to obtain the timings.

The legends for graphs should be interpreted from Table 8:

in 11 RTExpress produced C language object module run with Internet Protocol communications.

3*jl#t*"Wfrf.' RTExpress produced C language object module run with User Space communications.

MAT-I Execution within MATLAB as interpreted source. Always run serially on one processor.

MAT-C Execution within MATLAB as a MATLAB compiled C language object module. Always run
serially on one processor.

Table 8. RTExpress Communication Variations

Timing* for test code t*t_dirich.m

2
(0

3000

2500

2000

1500

1000

500

0

IIP

EUS

IMAT-I

□ MAT-c

1

163.3
162.5
17.5

0.8

1681.5

623.3

1722.2

681.9

2336.2

804.8

2888

945.3

NPROCS

Figure 11. Timings for test code tst_dirich.m

This code exhibits a case where translation by RTExpress dramatically decreased the

performance. Figure 11 shows that performance continued to decrease as more processors

226

were added. The sizeable differences between IP and US protocols is suggestive of a

significant amount of data transfer taking place over the network between the multiple

instances of the parallel program. Note that the MATLAB compiled executable demonstrated

an execution time of less than one second when it was run serially on a single processor.

The tst_dirich.m code is an iterative method and contains multiple loops, one of

which is double nested inside of a while loop. According to the vendor, RTExpress performs

very poorly on loops, particularly nested loops, and suggested that codes should be written as

much as possible using vector syntax instead.

Tim ings for test code inv.m

^
a 200.0 --
■o
o 150.0 -

w 100.0 --

11 Bl fc Mm Mm Mm Mm Mm
1 2 4 6 8 10 ! 12 14 16

■ IP 264.2 67.8 42.7 37.5 34.4 | 34.5 | 33.4 33.6 33.6

□ US 260.8 62.8 34.7 26.5 22.3 i 22.3 | 20.0 18.8 18.0

BMAT-I 208.2 ! i
DMAT-c 206.9 i i

NPROCS

Figure 12. Timings for test code inv.m

The test code Inv.m consists of a call to the MATLAB inv () function and

demonstrates considerable improvement with RTExpress, as indicated in Figure 12. The

matrix size was 2000 x 2000 real elements, approximately 32 MB in size, making it a

reasonably large data set. Note that on one processor, the MATLAB compiler only

marginally improved the interpreted execution. Also note the overhead imposed by

RTExpress for the execution one processor.

Especially worth noting is the 400+ % speedup produced when the RTExpress

executable is run on 2 processors versus 1. Adding additional processors continues to

improve performance, though the results suggest that any gains achieved beyond 6

processors does not significantly improve performance. The relatively small differences

between IP and US timings, considering that US is generally three times faster than IP,

indicates that there is little interprocess communications.

227

The effort to parallelize this code was minimal, relying upon RTExpress to

automatically analyze and implement the data decomposition.

Timings for test code simple.m

20.0 -r

15.0 -

10.0 -

5.0 -

»
•D
C
o

CO

■ 1 W® mm mi ._. ■S3
16 0.0 ■*

1 2 4 6 8 10 12 14

■ IP 15.3 3.8 3.9 1.4 1.0 0.9 0.8 0.6 0.6

□ us 15.1 3.4 4.5 1.2 0.9 0.8 0.6 0.5 0.5

HMAT-I 11.9 !
DMAT-C 10.7 i

NPROCS

Figure 13. Timings for test code simple.m

The "simple.m" test code, as shown in Figure 13, illustrates RTExpress performance

for an "embarrassingly parallel" code. RTExpress implements the FFT operations using data

distribution of the matrix by columns to the number of available processes. As shown, very

good speedup is achieved with 2 processors and weakened improvement after 6 processors.

Again, the effort to parallelize this code was minimal, relying upon RTExpress to

automatically analyze and implement the data decompostion.

Timings for test code filt.m

NPROCS

Figure 14. Timings for test code filtm

228

The filt.m evaluation code utilized the mixed-mode parallel paradigm of

RTExpress. The original serial m-file was partitioned into four distinct groups using the

RTExpress Target Balancing Tool editor. The first group continually reads a 5.5 MB input

file consisting of multiple frames of image data stored as individual matrices. The other

groups work in parallel to perform an image processing operation on the matrix, in this case,

edge detection. The edge detection algorithm code was easily decomposed into three

functional tasks. As each frame is read by the first group, the data is passed to each of the

other compute groups, which then operate independently. This functional/task parallelism is

enhanced by adding additional processors to the compute tasks, allowing them to perform

data parallelism within their group. ' --'.::

Figure 14 demonstrates improvement obtained by adding additional processors to

each of the edge detection groups. For example, when NPROCS is 4, then the "read" group

has one processor, as does each of the three compute groups. When NPROCS is 7, the "read"

task still has one processor, but each of the compute groups now has two: processors.

Because I/O is an inherently serial operation in RTExpress, there is no benefit to using more

than one processor with the "read" group. During this evaluation, compute groups were

always kept equal in the number of processors assigned to them. Additional testing could

certainly be done to determine execution behavior when the processors within a group vary.

Timings for test code rawtofft1.cn

C
o

IIP

BUS

IMAT-I

□ MAT-C

5.8

5.8

6.4
5.2

7.1

6.3
8.0

6.5

NPROCS

Figure 15. Timings for test code rawtofftl.m

229

Timings for test code rawtofft2.m

1.0

n
TJ c
o u a w

IIP

EUS

IMAT-I

DMAT-C

0.2

0.2

0.8

0.4

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

NPROCS

Figure 16. Timings for test code rawtofft2.m

The two evaluation codes in Figures 15 and 16 performed the Fast Fourier

Transforms utilizing opposing algorithms. The first code demonstrated weaker

parallelization due to a heavy utilization of looping control.

The "loops.m" test code further demonstrate the RTE's dependency on MATLAB

loop control. In the serial version of the code, 4 loops are executed sequentially. Each code

fragment consists of a doubly nested loop over a 2000x2000 matrix which performs a simple

assignment to each element in the matrix.

Timings for Test Code loops.m (non-vector)
MATLAB interpreted. All 4 loops executed serially on a single processor. 477.8

MATLAB compiled. All 4 loops executed serially on a single processor. 16.2

RTExpress. All 4 loops executed serially on a single processor 596.5

RTExpress. Parallel. One loop distributed to each of 4 processors. IP communications 601.3

RTExpress. Parallel. One loop distributed to each of 4 processors. US communications 601.7

Table 9. Timings for test code loops.m (non-vector)

As shown in Table 9, RTExpress parallel execution took 4 times a long as the

RTExpress serial execution (4 processors x 601 seconds). Upon discovery the developers of

RTExpress advised rewriting the algorithm utilizing vector operation. Following this advice,

as shown in Figure 17, yielded considerable speedup as shown in Table 10.

230

Before: non-vector After: vectorized

A = zeros(2000,2000); A = zeros(2000,2000) ;
for i = 1:2000 1 = linspaced,2000,2000) ;

for j = 1:2000 for i = 1:2000
m = I; m = l;
n = :; A(i,:) = m .* 1;
A(i,j) = m*n; end

End .
End

Figure 17. Vectorized and Non-Vectorized Versions of Matrix Multiply

Timings for Test Code loops.m (vectorized)
MATLAB interpreted. AH 4 loops executed serially on a single processor. 12.4
MATLAB compiled. All 4 loops executed serially on a single processor. 10.8
RTExpress. All 4 loops executed serially on a single processor. 37.2
RTExpress. Parallel. One loop distributed to each of 4 processors. IP communications 9.4
RTExpress. Parallel. One loop distributed to each of 4 processors. US communications 9.3

Table 10. Timings for test code loops.m (vectorized)

The "loops.m" example here provides insight into the overhead imposed by RTEpress

by comparison with the times for the compiled (10.8s) and RTExpress operation (37.2s) on

one processor.

The test codes listed in Table 11 further illustrate performance degradation with

resulting from nested loops.

Timings for Test Code tst_icn.m and tst finedif.m
J ii_it,n in lst_iinedil.in

MATLAB interpreted 11.4 11.8
MATLAB compiled 0.2 0.5
RTExpress serial w/IP communications 99.6 153.6
RTExpress serial w/US communications 95.9 153.3
RTExpress parallel - 2,4, 8, 16 processors All greater than 7200 All greater than 7200

Table 11. Timings for test code tst_icn.m and tst_finedif.m

231

5 RECOMMENDATIONS

As mentioned, the degree of improvement achieved by each of these utilties is

dependent on many factors such as MATLAB code structure, communication interface, and

execution environment. In addition, there are other factors users need to consider such as

number of MATLAB licenses available, amount of development time available, along with

availability and support, which factor into using one of the mentioned parallel-MATLAB

utilities. As such, we provide recommendations for both users and developers for each of the

classes of approaches.

Compiler Approaches, utility developers

• MathTools, Math Works: The Falcon report demonstrated two primary areas

which would make both MATCOM and MathWorks compilers better products:

dynamic inference and inference phase comparisons. Utilizing both of these

techniques will improve these commercial products.

• MathWorks: MATLAB's latest compiler version V2.0.1 does not allow any

manual inference customization, this being solely handled by the MATLAB

compiler. It was shown here and in the Falcon report that inference control can

yield measurable performance differences. In short, allow users the control of

inference by returning the use of the -r and -i switches and pragmas.

Compiler Approaches, users:

The following is a list of recommendations that developers should keep in mind when

using the compilers approaches:

• MATLAB programs which spend a significant time performing library calls will

not be greatly improved. Use of the MATLAB "tic" and "toe" commands can

quickly determine the location of your heavy computations.

• MATLAB routines with significant matrix accesses will benefit greatly from

intelligent shape inference and matrix preallocation. Therefore, if you don't

require variable matrix size, preallocate your matrices.

• MATLAB "for" loops should be vectorized as much as possible.

232

• Small MATLAB routines should be written inline (same file or subroutine) as

much as possible.

• Identify your target compiled language data types at development time. Simply

put comments around your data structures indicating your estimate of what the

data types would be in a compiled language.

Interpretive Approaches, utility developers:

• As the Parallel Toolbox (PT) product requires a MATLAB license for each

processor, and it is not distributed by a commercial entity it is not recommended

as a general purpose solution.

• Matpar and MultiMATLAB complement each other in that Matpar requires only

one license and utilizes high performance libraries. Further, both incorporate the

defacto High Performance Computing communication mechanism, message

passing. It is our recommendation to the developers that that the technologies be

encapsulated and distributed together.

Interpretive Approaches, users:

• Use of the interpretive approaches is with risk in that none of the approaches

discussed are commercially maintained and distributed.

• Users need to closely manage the computation/communication ratio in that all of

the solutions investigated are built on slow communication interfaces.

• The MultiMATLAB and Matpar utilities are valuable in that they require less

time to implement a solution and the user stays within the familiar MATLAB

environment for all stages of development.

• Do not use the MultiMATLAB "Get" call to collect data from worker nodes. The

time spent in sequencial waits will overwhelm any savings from a Massively

Parallel distribution.

Full Suite approach, utility developers:

233

• RTExpress utilizes MATLAB's mcc compiler which has limitations listed above.

RTE may benefit from by allowing the use of either MathWork's or MathTool's

compilers.

• RTExpress hides the control of mcc v 1.2 compiler switch settings (-r-I). When

mcc returns manual editing of variable inference, RTExpress should pass this

capability up to the developer.

Full Suite approach, users:

• RTExpress does require some training, but the potential for MATLAB

improvement can be great depending on your code size and time available.

• Vectorize loops whenever possible.

234 »

APPENDIX A - SOURCE MATLAB TEST CODE
This section lists all of the source MATLAB codes used for the on-site testing.

AIAQ

function [SRmat,quad,err] =
tst_adapt (a, b, sz_guess, tol)
%
% Sample call
% [SRmat,quad,err] = adapt)'f',a,b, tol)

% Inputs
name of the function
left endpoint of [a,b]

right endpoint of [a,b]

convergence tolerance

%

matrix of adaptive Simpson quadrature

adaptive Sirtpson quadrature
error estimate

f
% a
% b
% tol
% Return
% SRmat
values
% quad
% err
%

.% NUMERICAL MEIHX6: WffiLSB Programs, (c) John H.
"Mathews 1995
% To accompany the text:
% NUMERICAL MEIHDDS for Mathematics, Science and
Engineering, 2nd Ed, 1992
% Prentice Hall, Englewood Cliffs, New Jersey, 07632,
U.S.A.
% Prentice Hall, Inc.; USA, Canada, Mexico ISHS 0-13-
624990-6
% Prentice Hall, International Editions: TSFN 0-13-
625047-5
% This free software is compliments of the author.
% E-mail address: in%"itat±iev^fullerton.edu"
%
% Algorithm 7.5 (.adaptive Quadrature Using Simpson's
Rule).
% Section 7.4, Adaptive Quadrature, Rage 389
%

SRmat = zeros(sz_guess,6);
iterating = 0;
done = 1;
% SRvec = zeros(6); not necessary.

%% SRvec = my_srule('f\a,b,tol);

h = (b - a)/2;
c = (a + b)/2;
Ea = 13.*(a - a."2).*exp(-3.*a./2); %f(a)
Fc = 13.*(c - c.A2).*exp(-3.*c./2); %f(c)
Fb = 13.*(b - b.*2).*exp(-3.*b./2); %f(b)
S = h*(Fa + 4*Fc +■ Fb)/3;
S2 = S;
toll = tol;
err = tol;
SRvec = [a b S S2 err toll];

SRmat(l,l:6) = SRvec;
m = 1;
state = iterating;
virile (state = iterating)
n = m;.
for j=n:-l:l,

P = 3;
SROvec = SRmat(p,:);

err = SR0vec(5);
tol = SR0vec(6);

if (tol <= err),
state = done;
SRlvec = SROvec;
SR2vec = SROvec;

a = SROvec(l);
b = SROvec(2);

c = (a + b)/2;
err = SROvec(5);

tol = SROvec (6);
tol2 = tol/2;
SRlvec = my_srule('f',a,c,tol2);

aO = a;
bO = c;
tolO = tol2;
h =

CO =
Fa =
Fc =
Fb =
S =
S2 =
toll
errl

(bO - a0)/2;
(aO + b0)/2;

13.*(a0 - a0.~2),
13.*(c0 - c0."2).
13.*(b0 - bO.^2).

*exp(-

*exp(-
*a0./2),
*c0./2).

%f(a0)
%f(c0)

*exp(-3.*b0./2); %f(b0)
h*(Fa + 4*Fc + Fb)/3;

S;
= tolO;
= tolO;

SRlvec = [aO bO S S2 errl toll];

% SR2vec = my_srule('fr,c,b,tol2);

aO = c;
bO = b;

tolO = tol2;
h = (bO - a0)/2;

cO = (aO + b0)/2;

Fa = 13.*(a0 - a0."2).
Fc = 13.*(c0 - c0.~2).

*exp(-3.*a0./2); %f(a0)
*exp(-3.*c0./2); %f(c0)

Fb = 13.*(b0 - b0.~2).*exp(-3.*b0./2); %f(b0)

S =h*(Fa + 4*Fc + Fb)/3;
S2 = S;
toll = tolO;
errl = tolO;
SR2vec = [aO bO S S2 errl toll];

err = abs(SR0vec(3)-SRlvec(3)-SR2vec(3))/10;

if (err < tol),
SRmat(p,:) = SROvec;
SRnat(p,4) = SRlvec (3) +SR2vec(3);
SRmat (p,5) = err;

else
SRmat (p+1 :m+l,:) = SRmat(p:m,:);
m = m+1;

SRmat(p,:) = SRlvec;
SRmat(p+l,:) = SR2vec;
state = iterating;

end
end

end
end
quad = sum(SRmat(:,4));
err = sum(abs(SRmat(: ,5)))•;
SRmat = SRmat(l:m,l:6);

235

A.2CQ
%
% Copyrighted, 1993, by Richard Barrett, Michael
Berry,
% Tony Chan, James Demrrel, June Donato, Jack Dongarra,
Victor Eijkhout,
% Roldan Pozo, Charles Romine, and Henk van der Varst.
%
% The M-file was created to supplement "Templates for
the Solution of
% T.inmr Systems: Building Blocks for Iterative
Methods," by Richard Barrett,
% Michael Berry, Tony Chan, James Darnel, June Donate,
Jack Bongarra, Victor
% Eijkhout, Roldan Bozo, Charles Ranine, and Bank van
der Vorst (SEW, 1994).
%
% You are free to modify any of the files and create
new functions, provided
% that you acknowledge the source in any publication
and do not sell the
% modified file.
%

function [x, flag, Error, iter] = tst_cgopt(A, b,
max_J.t, tol, x)

% — Iterative template routine —
% Univ. of Tennessee and Oak Ridge National
laboratory
% October 1, 1993
% Details of this algorithm are described in
"Templates for the
% Solution of Linear Systems: Building Blocks for
Iterative
% Methods", Barrett, Berry, Chan, Dermel, Donato,
Dongarra,
% Eijkhout, Pozo, Romine, and van der Vorst, SIAM
Publications,
% 1993. (ftpnetlib2.cs.utk.edu; cd linalg; get
templates.ps).
%
% [x, error, iter, flag] = eg (A, x, b, M, max_it,
tol)
%
% cg.m solves the symmetric positive definite linear
system Ax=b
% using the Conjugate Gradient method with
rarecxxüitioning.
%
% input A REAL syimetric positive definite
matrix
% x
% b
% M

RESL initial guess vector
REAL right hand side vector
REAL preconditioner matrix (LDR -

removed from original M-file)
% maxjLt INTEGER maximum number of iterations

tol REAL error tolerance

% output x
% error
% iter
performed
% flag
tolerance
%
max_it
%
% Modified by Luiz A.
%

REAL solution vector
REAL error norm
INTEGER number of iterations

INTEGER: 0 = solution found to

1 = no convergence given

De Rose (derose@cs.uiuc.edu)

fcnrrrß = 1.0; end

bnrrrß;
return, end

M = diag(diag(A));

flag = 0;
initialization
iter = 0;
bnrnß = norm(b) ;
if (bnrm2 = 0.0
r = b - A*x;
Error = normt r) /
if (Error < tol),
for iter = l:max_it
iteration
% z = M \ r;

z = r ./ diag(M) ,-
rho = (r'*z);
if (iter > 1),

vector
beta = rho / rho_l;
p = z + beta*p;

else
p = z;

end

q = A«p;
alpha = rho / (p'*q) ;
x = x + alpha * p;

approximation vector

r = r - al£ha*q;
residual

Error = nom(r) / bnrnG;
convergence

if (Error <= tol), break, end

% begin

% direction

% update

% compute

% check

flag = 1; end % no

'g',a,b,c,n,m)

rho_l = rho;

end

if (Error > tol),
convergence

A3FD

function U = tst_finedif (a,b,c,n,m)
%
%F!NKUIF Finite difference solution to the wave
equation.
% Sample call
% U = finedifCf
% Inputs
% f name of a boundary function

name of a boundary function
is the width of interval [0 a]: 0<=x<=a
is the width of interval [0 b]: 0<=t<=b
is the constant in the wave equation
is the number of grid points over [0 a]
is the number of grid points over [0 b]

% Return
% U solution: matrix
% "
% NUMERICAL METfEDS: MATLAB Programs, (c) John H.
Mathews 1995
% To accompany the text:
% NCMERICAli METrEDS for Mathematics, Science and
Engineering, 2nd Ed, 1992
% Prentice Hall, Englewood Cliffs, New Jersey, 07632,
U.S.A.
% Prentice Hall, Inc.; USA, Canada, Mexico ISBM 0-13-
624990-6

% g
% a
% b
% c
% n
% m

236

% Prentice Hall, International Editions: T.STO 0-13-
625047-5
% Ihis free software is compliments of the author.
% E-mail address: in%"nBthews@fullerton.edun

%
% Algorithm 10.1 (Finite-Difference Solution for the
Wave Etjjation).
% Section 10.1, Hyperbolic Etjjations, Rage 507
%
rml = n - 1;
h = a/rml;
k = b/ (m-1) ;
r = c*k/h;
r2 = r~2;
r22 = r^2/2;
si = 1 - r-"2;
s2 = 2 - 2*r^2;
XI = zeros (n,m);
for i=2:nnl,

x = h*(i-l);
hjm2 = h*(i-2);
U(i,l) = sin(pi*x) + sin(3*pi*x);
U(i,2) = sl*(sin(pi*x) + sin(3*pi*x)) + ...

r22*(sin(pi*h*(i)) + sin(3*pi*h*(i))) + ..
sin(pi*h*(i-2)) + sin(3*pi*h*(i-2));

end
for j=3:m,

for i=2:rml,
U(i,j) = s2*U(i,j-l) + r2*(U(i-l,j-1) + U(i+l,j-

1)) -U(i,j-2);
end

end

A4W
function U = tet_dirich(fl,f2,S,f4,a,b,h,tol,iraxl)
%
%DIRICH Dirichlet solution to Tspinne's eauation.
% Sarrple call
% U = dirich(,fl•, 'f2', 'f3', ,f4',a,b,h,tol,niaxl)
% Irputs
% f 1 name of a boundary function
% f2 name of a boundary function
% f3 name of a boundary function
% f4 name of a boundary function
% a width of interval [0 a]: 0<=x<=a
% b width of interval [0 b]: 0«=y<=b
% h step size
% tol convergence tolerance
% iraxl maximum number of iterations
% Return
% U solution: matrix
%
% NUMERICAL METHCGS: MfllAB Programs, (c) John H.
Mathews 1995
% To accompany the text:
% NUMERICAL METHODS for Mathematics, Science and
Engineering, 2nd Efl, 1992
% Prentice Hall, Englewood Cliffs, New Jersey, 07632,
U.S.A.
% Prentice Hall, Inc.; USA, Canada, Mexico ISEN 0-13-
624990-6
% Prentice Hall, International Editions: IHEN 0-13-
625047-5
% This free software is compliments of the author.
% E-nail address: in%"mathews@fullerton.eou"
%
% Algorithm 10.4 (Dirichlet Method for Laplace's
Etjjation).
% Sectionl0.3, Elliptic Etjjations, Page 531

%
n = fix(a/h)+l;
m = fix(b/h)+l;
ave = (a*(fl+f2) + b*(f3+f4))/(2*a+2*b);
U = ave*anes(n,m) ;
for j=l:m

U(l,j) = f3;
U(n,j) = f4;

end
for i=l:n

U(i,l) = fl;
U(i,m) = f2;

end
U(l,l) = (U(l,2) + U(2,l))/2;
U(l,m) = (U(l,m-1) + U(2,m))/2;
U(n,l) = (U(n-l,l) + U(n,2))/2;
U(n,m) = (U(n-l,m) + U(n,m-l))/2;
w = 4/(2+sart(4-(cos(pi/(n-l))-K3os(pi/(m-l)))"2));
err = 1;
cnt = 0;
while ((err>tol) & (cnt<=aBxl))

err = 0;
far j=2:(m-l),

for i=2:(n-l),
relx = w*(U(i,j+l)-tU(i,5-l)4U(i+l,j)+ U(i-l,j)-

4*U(i,j))/4;
U(i,j) = U(i,j) + relx;
if (err<=abs (relx))

err=abs(relx);
end

end
end
cnt = cnt+1;

end

Ä.5 Ga
function [theta, phi, free] = tst_galrkn(N, rho,
Nplot)
%
% copyrighted, 1993, by Alejandro Garcia
%
% The routine supplement the book,
% "Numerical Methods for Physics Using MATCAB"
% (Prentice Hall).
%
% 2-dimansions using Galerkin method (Neumann boundary
cond.)
epsO = 8.8542e-12; % Permittivity (CT2/ (N m"2))
L = 1; % System size
M=2; % Number of charges (M=2 is dipols)
% Initialize position and charge of line charges
d = 0.1*L; % Dipole separation
xq(l) = L/2;
yq(l) = L/2+d/2;
q(l) = 1;
xq(2) = L/2;
yq(2) =L/2-d/2;
q(2) = -q(l) ;
a = zeros(N) ;
delt = ones(N,l); % delt(i) = 1 + delta(i,l)
delt(l) = 2;
for k=l:M % Sum over charges
taipx = cos ((0:N-l)*pi*xrj(k)/La-
tency = oos((0:N-l)*pi*yq(k)/L);
for i=l:N
for j=l:N

a(i,j) = a(i,j) + q(k)*tempx(i)*tempy(j)...
/(((i-ir2+(j-ir2 +

eps)*delt(i)*oelt(j));
end

end

237

end
a = 4/(eps0*pi~2) * a; % Threw in the factor cut in
front
phi = zeros (Isfilot, 1) ;
theta = pi * (0:l£>lot-l)/(Nplot-l);
for k=l:ft>lot
x = L/2 + rho*sin (theta (k)); % Coordinates at

which to
y = L/2 + rho*cos (theta (k)); % evaluate potential
for i=l:N
% baipx=cos((i-l)*pi*x/L),-
xtemp = cos((i-l)*pi*x/L);
for j=l:N

% phi(k) =phi(k) + a(i, j)*tenpx*cos((j-

1) *pi*y/U ;
phi(k) =phi(k) + a(i, j)*xtarp*oos((j-l)*pi*y/L);

end
end
% Plot potential and compare with free dipole
r_rc = [rho*sin(theta(k)) rho*cos(theta(k))];

Ihn = r_rc - [0 d/2];
Ipl = r_rc + [0 d/2];
free(k) = -q{l)/(2*pi*eps0)*(log(narmfttnn)) -

log (norm (Tpl)));
% free(k) = -q(l)/(2*pi*eps0)*(log(norm(r_rc - [0
d/2])) - ...
% log(norm(r_rc + [0 d/2])));
end

AJ6EC

function [thplot, rplot, kinetic, potential, tplot,
total F,] = ...

tst_orbec(rO, vO, tau, nstep);
%
% copyrighted, 1993, by Alejandro Garcia
%
% The routine supplement the book,
% "Nanerxcal Msthods for Physics Using MKITAB"
% (Prentice Hall).
%
% orbe - Program to conpute the orbit of a comet
% using the Euler method.
% clear; help orte; % Clear memory and print header
r = [rO 0];
v = [0 vO];
GM = 4*piA2; % Grav. const. * Mass of am
(auA3/yr"2)
mass = 1.; % Mass of projectile
%%%%% MAIN LOOP %%%%%%
time = 0;
for istep=l:nstep
rplot(istep) = norm(r); % Record orbit for

polar plot
thplot(istep) = atan2(r(2),r(l));
tplot(istep) = time;
kinetic(istep) = .5*mass*norm(v)A2; % Record

energies
potential(istep) = - GM*mass/norm(r);
% Calculate new position and velocity
accel = -GM*r/norm(r)"3; % Gravity
v = v + tau*accel;
r = r + tau*v; % Edler-Crcmer step
time = time + tau;

end
totalE = kinetic + potential;

A.7RK

function xcut = rk4_orb(x,t,tau,param)

%
% copyrighted, 1993, by Alejandro Garcia
%
% Ite routine supplement the book,
% "Numerical ffethods for Physics Using MKHAB"
% (Prentice Ball).
%
% Runge-Kutta integrator (4th order)
% Input arguments -
% x = current value of dependent variable
% t = inaBpendent variable (usually tine)
% tau = step size (usually timestep)
% cterivsRK = right hand side of the CCE; derivsRK is
the
% nama of the function vifoich returns dx/dt
% Calling format derivsRK(x,t,param).
% param = extra parameters passed to derivsRK
% Output arguments -
% xout = new value of x after a step of size tau
halfjtau = 0.5*tau;
%F1 = f eval(derivsRK,x,t,param);
Fl = gravrk (x,t, param);
t_half = t + half_tau;
xtatp = x + half_tau*Fl;
%F2 = feval (derivsRK, xtemp, tjialf, param);
F2 = gravrk (xtemp,t_half, param);
xtemp = x + half_tau*F2;
%F3 = feval (ÖBrivsRK,xtemp,t_half,param);
F3 = gravrk (xtemp, tjnalf, param);
t_full = t + tau;
xtemp = x + tau*F3;
%F4 = feval (derivsRK, xtarp,t_full, param);
F4 = gravrk (xtenp, t_full, param);
xout = x + tau/6.*(Fl + F4 + 2.*(F2+F3));
return;

Incarplete Cholesky factorization of matrix A,
with the same sparsity pattern as A. ICCG(0).

1 December 1993
R. Bramley
Department of Computer Science
Indiana university

ASK

%
%
%
%
%
%
%
%
%
%
function [L, Error] = tst_icn(A) ;

n = size(A, 1);
L = A;
Error = 0;
for j = l:n

s = 0;
f or k = l:j-l;

s = s + L(j,k)*L(j,k);
end
r = sqrt(L(j,j) - s);

if (r <= 0),
Error = j;
L(j,j) = 1;

else
L(j, j) = r;

end % if (L(j,j) <= 0)',

t = 1/L(j,j);

for i = j+l:n;

238

if (L(i,j) ~= 0),
S = 0;
f or k = l:j-l;

s = s + L(i,k)*L(j,k);
end;
L(i,j) = t*(L(i,j) - sh-

erd; % if (L(i,j) ~= 0)
ad;

end; % far j
L = tril(L);

A53D

%
% Generation of a three dimensional surface
%
% M=i-Qin Chen
% The Citadel
%

furcticn [c,b,dd,ind] = tst_3D(amin, anax, bnin, hrax,
aran, arax, h)
a=amin:h:atrax;
b=fcmin:h:fcmax;
c=anin:h:cmax;
na=length(a) ;
nb=length(b) ;
nc=length(c) ;
dd=zeros (rib, re) ;
ind=0;
for kk=l:na,

for ii=l:rib;
for jj=l:nc;

arat=[a(l,kk) b(l,ii) c(l,jj);l 0 0;0 1
0];

ev=eig(amat) ;
znorm=real(ev) .A2+iitBg(ev) ."2;
if max(znorm)<l,

incNind+1;
cfl(ii,jj)=a(l,Wc);

aü;
erb-

end;
end;
% surf(c,b,dd)

% check result
%
err = max(max(abs(a - h)))

AJ1HLT

function filtl

raw = figure(2);
colornEp(gray) ;
edg = figure(3);
colarmap(gray) ;

gdata = fopen('durmygray.bin', 'r');

hk = [-1 -1 -1; 0 0 0; 1 1 1] ;
*=[-10 1; -1 0 1; -1 0*1];

threshe = 100.0;

while (1)

[irrgin, count] =
freadfgdata,[278,392],'uchar');

if (count = 0)
fclose(gdata);
break;

else

figure (raw);
image(imgin) ;

threshe;

img = imgin - mean (mean (imgin)) ;

hf = abs(conv2(img, hk, 'same'));

vf = abs(conv2(img, vk, 'same'));

cf = max(threshe, (hf + vf)) -

figure(edg);
image(cf);

end
end;

AJ2RawTofm
AJOSSnjfc

% generate data
%
a = 1000 .* rand(1024,1024);
tic;
%
% oatpute 2-D EFT in separate steps

b = fft(a);
c = fft(b.');
d = c.' ;
f = ifft(d);
g = ifft(f.');
h = g.' ;
%
% oatpute performance
%
ttime = toe
fflcps = 11665664
mflcps = fflops ./ ttime
%

function [der] = raWIbETTKx, numP, numR, nunC)

%
% range weight data

range_offset = 116;
inu-_denom= 1 ./ (32768*range_offset*range_offset);
for range = l:nurR,

x((range-1) *rumP+l:range*numP,:) = ...
x((range-

1)*njmPtl:range*numP,:)*(range_offset+range-l)...
*(range_offset+range-1)*inv_dencm;

end;

%
%
%

w
wnow

compute doppler weighting matrix

: zeros (nunP-1, nmC);
: hanning(numP-l);

239 i

far c=l:niJtC,
w(:,c) = wndw;

end;
%
% doppler filter
%
xx = zeros(numP,nurC);
for ir = l:nurR,

xx(l:(nunP-l),:) = w .* x((ir-
D*numP<-l:ir*rumP-l,:) ;

xx(numP, :)=zeros(l,runC) ;

öfcr(l:nunC*numP,ir) =
reshape (f f t (xx), rorP*nLirC, 1) ;

xx(l:(nLmP-l),:) = w .* x((ir-
1) *numP+2: ir*numP,:) ;

öfcr(rurC*numP+l : 2*rotC*runP ,ir) =
reshape(fft(xx) ,numP*nurrC,l) ,-
end;

AJ3Ra»TOFFn
function [der] = rawToFFT2(x, numP, nurR, rmC)
nunenurC = numR*nurrC;
numPruiC = nunP*nuitC;
numPnurR = runP*nurtR;
%
% range weight data
%

range_offset = 116;
inv_denom= 1 ./ (32768*range_offset*range_offset);
1
range_offset+floor(linspaoe(0, (nuriPrurrR-1) ./nuriP,
nuonPnunR)) ;
1 = 1 .* 1 * iTR7_denan;
1 =1-';
rwght = 1 * ones(l,nurC);
x = rwght .* x;
%
% catpute doppler weighting matrix
%

wndw = harming (rnmP-1) ;
wndwpad = [wnd*; 0];
<J«ght = wndwpad * ones(l, rurRnutC)

%
% reshape data
%

X = reshape (x, numP, nurriRnurtC) ;

%
% doppler filter
%

xx = fft(x .* dwght);

der = zeros(2*nuriPniiiC,nurrR);

%
% reorder data
%

for c=0:nLmC-l
der (c*rumP+l: (c+1) *numP,:)

c*nurrR+l: (c+1) *rorR) ;
end;

xclear(xx) ;

xx(:,

doppler filter

zeros (l,nLrtRnurtC)] ;
[x(2:nirP,:) ;

fft(x .* dwght);

reorder data

for c=0:nurC-l
der (c*rurP*-l+ruiiPniirC: (c+1) *riiriP+amPiiLnC,:)
= xx(:, c*nunR+l: (c+1) *nixrR) ,-

end;

240»

ACKNOWLEDGEMENTS
The authors wish to thank the personnel at DARPA for sponsoring this effort and the

personnel at the Maui High Performance Computing Center the allowing them to complete
this report. The authors wish to thank Luiz DeRose from University of Illinois, Fred Pearson
from Lincoln Laboratory for their donations of test code. Further, the support from Air Force
Research Laboratory, Science Applications International Corporation, and Albuquerque High
Performance Research Center is also appreciated.

24A

REFERENCES

[1] The MathWorks Inc, MATLAB Compiler User's Guide, 1995.

[2] V. Menon, A. Trefethen, "MultiMATLAB: Integrating MATLAB with High-
Performance Parallel Computing", SuperComputing '97 Technical Paper.

[3] Real Time Express, http://www.rtexpress.com/.

[4] Luiz De Rose and David Padua, A MATLAB to Fortran 90 Translator and its
Effectiveness, 10th ACM International Conference on Supercomputing, May 1996.

[5] The RTExpress distribution example codes.

[6] The Ground Processing Space Time Adaptive Processing (STAP) Suite courtesy of
Massachusettes Institute of Technology/ Lincoln Laboratory.

[7] P. L. Springer, Matpar: Parallel Extensions for MATLAB, http://www-
hpc.jpl.nasa.gov/PS/MATPAR/index.html.

[8] Joel Hollingsworth, Kun Liu, and Paul Pauca, Parallel Toolbox for MATLAB, Wake
Forest University, http://www.mthcfc.wfu.edu/pt/pt.html.

[9] H. Anton, Elementary Linear Algebra, 1984, John Wiley and Sons, p69-86.

242

15. Using MultiMATLAB at the MHPCC

F. Melody Bohn
Maui Community College (MCC)

D. J. Fabozzi
Maui High Performance Computing Center (MHPCC)

3 February, 1999

To Support Gontract Statement of Work Subtask .4.1.4.1, Investigate and
implement fine grain parallelizatiort over the MHPCC SP-2 nodes in the Khoro's
1.5 environment of the RLSTAP/ADT and MATLAB.

243

Using MultiMATLAB At The MHPCC

F. Melody Bohn
Maui Community College

kas@maui.net

D.J. Fabozzi
Maui High Performance Computing Center

Kihei, HI, 96753
fabozzi @ mphcc.edu

February 3, 1999

Introduction

MultiMATLAB[l] is a utility developed by the Cornell Theory Center (CTC) which allows
MATLABR processes to be distributed across multiple processors. The user instruments native
MATLAB code with MultiMATLAB calls which perform the data distribution and process
control in a Massively Parallel Processing (MPP) environment. This report details the
MultiMATLAB architecture and the steps to performing MultiMATLAB processes at the Maui
High Performance Computing Center (MHPCC). This report also contains source listings of
necessary support files as well as a reference of all of the commands in the MultiMATLAB
library.

The MultiMATLAB Architecture at the MHPCC

The parallel environment at the MHPCC is built on the IBM RS/6000 Scalable POWERParallel
(SP) platform operating AIX version 4.2 and a variety of support software for the development
and execution of parallel programs. The MHPCC also offers a variety of mathematical and
scientific libraries including latest version of MATLAB which, at the time of this writing, is
version 5.2. Where appropriate, these libraries are identified in this report. For additional info
about the MHPCC, see http://www.mhpcc.edu.

The MultiMATLAB [2] architecture is implemented on the communication substrate MPICH
[3], the public domain version of MPI (Message-Passing Interface) developed by Argonne
National Laboratory and Mississippi State University allowing portable implementation across a
network of UNIX workstations on a parallel platform. The P4 version of MPICH allows
interprocessor communication between a network of workstations connected by TCP/IP.

244

User

Interactive
Processor

MATLAB
Process

Network

Non-Interactive
Processor

MATLAB
Process

Non-Interactive
Processor

MATLAB
Process

Non-Interactive
Processor

MATLAB
Process

Figure 1 Relationship between distributed processors

To execute an algorithm using MultiMATLAB [4], the user first launches MATLAB on the
master processor (interactive processor) which then broadcasts commands to slave processors.
Each slave processor launches its own MATLAB process and a MultiMATLAB MEX routine to
perform the distributed operation. MEX (MATLAB Executable) [5] [6] routines are external
subroutines written in C or Fortran which are executed from the MATLAB environment. The
parallel MEX slaves communicate directly with the MATLAB master process via the
communication layer.

Serial MEX
Routine»

MATLAB

PaialldlMEX
Routines

"i 5 5"

MultiMATLAB
Interface Module

i ± ±
Indirection Table

Communication Layer

Network

Figure 2 MultiMATLAB Architecture

245

The MultiMATLAB Interface Module initializes the communication layer and allows interaction
between the parallel MEX routines and the communication layer. The interface module resides
in each processor's MATLAB address space and allows the parallel MEX routines to access the
network without the intervention of the operating system.

When the interface module is first initialized it builds a table of pointers to all functions and data
pertaining to the communication layer. Subsequently, when a parallel MEX routine makes a call
to MultiMATLAB, the function makes a call to MATLAB only once and passes the location of
this table. The routine may now access this table and retrieve any communication layer
information it will need using the corresponding table offset.

Executing MultiMATLAB at the MHPCC
The following steps illustrate how to implement MultiMATLAB experiments:

1. Unix environment set up
2. Serial program development
3. Parallel program development
4. Batch job execution

1. Unix environment set up
The user's .cshrc or .login file must contain the following lines:

setenv MM_HOME [path]
setenv MATLABPATH [path]
setenv PATH .:[path]

The actual paths at the time of this writing are:

setenv PATH .:/usr/nfs/packages/math/MATLAB5/bin:$PATH
setenv MM_HOME /s/crest/djf/MATLAB/MultiMATLAB/final
setenv MATLABPATH /s/crest/djf/MATLAB/MultiMATLAB/final/interactive

2. Serial program development

Develop the serial version using known data and results. Figure 3 illustrates our test code
serialMul.m, which performs a matrix multiply. The algorithm creates two matrices A and B of
dimensions n2, populated with random numbers. The 1th row of matrix A and the j* column of
matrix B are multiplied and the sum-product is returned to the 1th row/j01 column of matrix C.

% serialMul.m
% This MultiMATLAB M-file serial matrix multiplication
%

function z = serialMul (n);

A = randn(n);

246

B = randn(n);
tic;

for i = 1 : n
for j = 1 : n

C(i,j) = A(i,:)*B(:,j);
end

end
z = toe;

Figure 3. serialMul.m - serial matrix multiplication

3. Parallel program development

MultiMATLAB allows either functional or data partitioning and this guide will examine the
latter. As the examples will show, MultiMATLAB commands, which are distinguished from
MATLAB commands by beginning with capital letters, are interleaved directly into the source
MATLAB code.

As shown in Figure 4, the original program broadcasts the matrices to the slave processors and
calls the new routine, remMul.m, Figure 5, which performs the partitioned matrix multiply. The
master processor creates three matrices (A, B, and C) on the master processor. MultiMATLAB
commands pass matrices A, B, and C to slave processors which execute each respective slave
routine. When the routines are completed on all slave processors, the submatrices in "C" are
returned to the master processor

% matMul.m
% This MultiMATLAB M-file performs matrix multiplication of two (n x n) square matrices
% w/ random entries for scalability timing tests. Assumes n (matrix dimensions) & Nproc (#
% of processors) exist in MATLAB variable space Returns time of execution

function z = matMul (n)
A = randn(n);
B = randn(n);
C = zeros(n);
tic;
Bcast('A');
Bcast('B');
Bcast('C);

Eval('remMul');
D = Sum(,C);

Figure 4 Master program broadcast and retrieve data

% remMul.m May 1998

247

%
% This MultiMATLAB M-file is called by matMul.m to
% perform matrix multiplication on each processor for
% its own individual slice of the resulting matrix.
%

% disp('commencing remote multiplication')

1 = ID * n / Nproc + 1 ;
u = (ID+l)*n/Nproc ;

for i = 1 : n
forj = 1: u

C(i,j) = A(i,:)*B(:,j);
end

end

%C

% disp('done multiplying remotely')

Figure 5 Slave processor execution

The matrix multiply is partitioned and performed on each processor according to limits set by
values of "1" (lower) and "u" (upper). For example, Figure 6 identifies those bounds placed by
"1" and "u" for given values of n, ID, and Nproc:

n = size of matrix =100
ID = ID of processor to do the processing = assigned during execution [0:Nproc-l]
Nproc = number of processors = 5
1 = start column number used in remote routine
u = end column number used in remote routine

ID I = fix[(ID-1) * n / (Nproc-1) + 1] u = fix[(ID * n) / (Nproc-1)]
1 1 25
2 26 . 50
3 51 75
4 76 100

Figure 6 Example data partitioning bounds

4. Batch job execution

Other steps are required for actual execution of MultiMATLAB jobs at theMHPCC. To begin,
the master processor needs a list of valid processor names (matMul.hosts) for execution.

248

This list is created from a call from a loadLeveler script after the job is submitted for execution
on the MHPCC system. An example load leveler script, matMul.cmd, is listed in Appendix A.
Notice this script invokes the command buf f erStuf f, which performs the dynamic creation
of the execution pool node list. Listed in Appendix B, buf f erStuf f, takes the Load leveler
hostfile selection and creates a startup.m file containing the valid node names. After which, the
start command initiates the MultiMATLAB daemon processes on each slave node begins the
distributed operation.

Summary
This document detailed the steps of executing MultiMATLAB command files at the Maui High
Performance Computing Center. Also included are the necessary command files for creating the
target node lists and load leveler command files. As the actual commands may change with any
system configuration, see the help@mhpcc.edu for system changes.

249

Appendix A

Load leveler batch command file: matMul.cmd

#!/bin/csh

#FILE: matMul.cmd
#DESCREPTION: Matlab Test LoadLeveler command
USE: llsubmit matMul.cmd
AUTHOR: 7/1/98 Matt Green 12/98 modified by Melody Bohn

#@ job_name = SerialMul

NOTE: Be sure to substitute your actual userid below
#@ initialdir = /u/melody/bohn

If running on MHPCC production system - be sure to remove the "class"
line below. This class only applies to the workshop machine.
class = Workshop

For the MHPCC production system, set this to some realistic value for your
###job.
#@ wall_clock_limit = 36000

#@ output = $(job_name).$(cluster).$(process).out
#@ error = $(job_name).$(cluster).$(process).out
#@ jobjype = serial
#@ requirements = (Adapter == "hps_user") && (Memory == 128)
#@ min_processors = 1
#@ environment = MP_EUrLIB=us;MP_INFOLEVEL=l ;MP_LABELIO=yes
#@ account_no = GOVTA-0030-G00
#@ queue

echo $LOADL_PROCESSOR_LIST > matMul.hosts

bufferStuff
matlab;

250

Appendix B

Parallel files: bufferStuff

BufferStuff-creates a startup.m file containing a different valid node names

#!/bin/ksh

for X in $(cat matMul.hosts)
do
print $X»hostList
done

cut -fl -dV hostList >hostList2

n=$(cat hostList2lwc -1);

Z="Start(['";

exec 0<hostList2;

while read Y
do

((n=n-l))
if((0<n))
then

if(($(print$Ylwc-c)==7))
then

Y="$Y";
Z="ZY';'";

else
Z="ZY';"';

fi
else

if (($(print $Ylwc -c)==7))
then

Y="$Y";
Z="ZY])";

else
Z="ZY])";

fi
fi

done
echo $Z>startup.m

echo "mat_inv4"»startup.m

251

echo "Quit"»startup.m
echo "quit"»startup.m

rm hostList
rm hostList2

252

Appendix C

Table of MultiMATLAB Commands

Most commands can be run only on the master process (process 0).
Commands marked by * can be run on the master process or on the remote processes (l:Nproc-l).

 Starting and stopping MultiMATLAB.
Start
Interrupt
Abort

Quit

- Initialize remote processes and begin MultiMATLAB session
- Interrupt MultiMATLAB processes during computation
- Abort MultiMATLAB session remaining in originally interactive
session

- Terminate remote processes and end MultiMATLAB session

Process arrangement and identification.
*ID
*Nproc
Grid
*Gridsize
*Coord

- Task ID of a process
- Total number of MultiMATLAB processes active
- Arrange the processes in a grid
- Dimensions of the grid of processes
Coordinates of a process in the grid

Running commands on multiple processes
Eval Evaluate a command on one or more processes

Communication
*Send
*Recv
*Probe
♦Barrier
Put
Get
Beast

Send data from one process to another
Receive data sent from another process
Determine if communication has been completed
Synchronize processes
Put data from the master process onto remote processes
Put data from remote process onto the master process
Transmit data to all processes using a tree structure

Distribution
Distribute
Collect
Shift

Distribute a matrix according to the values of Coord
Collect a matrix according to the mask created by Distribute
Shift data between processes

Arithmetic
Max
Min
Sum
Prod

Find the pointwise maximum of matrices on several processes
Find the pointwise minimum of matrices on several processes
Find the pointwise sum of matrices on several processes
Find the pointwise product of matrices on several processes

Graphics
Window Arrange figures in a grid according to function parameters

253 '

Reset Window
Refresh

Reset default window position to MATLAB default
Repaint all current figures

254

Appendix E

MultiMATLAB M-Files

Abort

Syntax: Abort

Abort MultiMATLAB

Barrier

Syntax: Barrier(a)

Synchronize all processes.
The command Barrier returns only when called
on each process.

Bcast

Syntax:
Bcast(val,bcast_root,bcast_communicator)

Bcast can be run only on the master process.

Broadcast a matrix from one process to all other
processes using a tree-structured algorithm.
Bcast('A',i, comm) takes process i as the root of
the tree and broadcasts A to processes using
communicator comm.
Comm is an optional argument, root is an
optional argument, if it is not defined the root is
assumed to be process 0.

See also Send, Recv, Put, Get.

Collect

Syntax: Collect(name)

Pre: ul - the upper left corner of the matrix
that was distributed chunk - the string, name of
the chunk on each of the processes

Post: return the matrix put back together (the
opposite from Distribute)

Coord

Syntax: [ij,k]=Coord

Coordinates in the grid. [i,j,k]=Coord returns
the coordinates of the calling process in the grid
set up by Grid.

See also Gridsize, Distribute, Collect, Shift,
Window.

Distribute

Syntax: Distribute (name)

Pre: m-by-n matrix name - a string for the
name of the matrix chunk.

Post: split the matrix into more or less even
chunks across the processes in the grid. Split
the matrix row-wise first across the first
coordinate, then column-wise across the second

255

coordinate, and column-wise again across the
last coordinate.

All the results go into the name value, the
master process gets the upper left corner in the
return value.

Note: the matrix dimensions have to be
greater than the grid

Eval

Syntax: Eval('cmd')

Syntax: Eval(i, 'cmd')

Eval can be run only on the master process.

Execute commands on one or more processes.
Eval('cmd') evaluates the command cmd or the
file cmd.m on all processes.

Eval(i,'cmd') evaluates cmd or the file cmd.m
on process(es) i, where i can be a scalar or a
vector.

Get

Syntax: A=Get(i,Aname)

Get can be run only on the master process.

Retrieve data from a remote process and place it
on the master process. A=Get(i,'B') gets matrix
B from i and puts the data in matrix A.
See also Put.

Grid

Syntax: Grid(m,n)

Syntax: Grid(m,n,p)

Grid can be run only on the master process.

Arrange the processes in a grid. Grid(m,n,p)
makes an m x n x p grid,

Grid(m,n) makes an m x n x 1 grid. Any
process can then obtain the coordinates of the
grid with the commands Gridsize and Coord,
and the same information is also used by
Distribute, Collect, Shift, and Window.

When MultiMATLAB is started, the processes
are in the arrangement corresponding to
Grid(NprocU).

Gridsize

Syntax: [i,j,k]=Gridsize

Dimensions of the grid of processes.
[m,n,p]=Gridsize returns the dimensions of
the grid of processes set up by Grid.

256

See also Coord, Distribute, Collect, Shift,
Window.

ID

Syntax: a = ID

Task ID of the process, an integer from 0 to
Nproc-1.

See also Nproc.

Interrupt

Syntax: Interrupt(m)

Interrupt a MultiMATLAB process during
computation, to return it to a listening state.
Input parameter m defines which process
should receive an interrupt, if no parameter is
provided, all processes receive an
interrupt.

Max

Syntax: res=Max(val)

Max can be run only on the master process.

Max('x') is the elementwise maximum of x over
all processes. The variable x must exist and
have the same dimensions on all
processes.

See also Min, Sum, Prod.

Min

Syntax: res=Min(val)

Min can be run only on the master process.

Min('x') is the elementwise minimum of x over
all processes. The variable x must exist and
have the same dimensions on all processes.

See also Max, Sum, Prod.

Nproc

Syntax: a = Nproc

Nproc is the only MultiMATLAB command,
aside from Start and Demo that can be issued
before MultiMATLAB has been initialized. If
MultiMATLAB has not been initialized, the
value of Nproc is 0.

Total number of MultiMATLAB processes
active.

See also ID.

Probe Flag indicating whether a message has arrived.

257

Syntax: [a,e,f] = Probe(b,c,d) Probe(i) returns 1 if the mess'age from process i
arrived and 0 if it has not.

Probe returns 1 if a message from any process
has arrived and 0 if no messages have arrived.

[f,i] = Probe returns the flag in f and the source
of the message in i.

Prod

Syntax: res=Prod(val)

Prod can be run only on the master process.

Prod('x') is the elementwise product of x over
all processes. The variable x must exist and
have the same dimensions on all processes.

See also Max, Min, Sum.

Put

Syntax: Put('A')

Syntax: Put(i,'A')

Put can be run only on the master process.

Put data from the master process to remote
processes.

Put(i,'A") places matrix A on process(es) i,
where i can be a scalar or a vector. Put('A')
places A on all processes.

See also Get.

Quit

Syntax: Quit

Quit can be run only on the master process.

Terminate remote MultiMATLAB processes
and end MultiMATLAB session, leaving user
within standard MATLAB.

If MultiMATLAB is running and the standard
MATLAB command quit is issued, the
MultiMATLAB session is first terminated and
then MATLAB is terminated as usual.

Recv

[al,a2,a3] = Recv(b,c,d)

Receive data sent from another process.

A=Recv receives any matrix sent to the process
and places it in A.

A=Recv(i) receives a matrix from process i and
places it in A.

258

[A,j]=Recv receives any matrix sent to the
process and returns the sender's ID in j.

[A,j,tag]=Recv returns also the tag of a
message.

See also Send, Put, Get.

Refresh

Refresh(ids)
Repaint all current figures

ResetWindow Can be called only by the master process,
process 0.

Resets the position for figure windows to the
MATLAB default.

See also Window.

Send

Send(a,b,c,d)

Send data from one process to another.

Send(i,A) sends matrix A to process(es) i,
where i can be a scalar or a vector.

Optional arguments may be used to indicate a
communicator or tag for a message
Send(i,A,comm,tag)

See also Recv, Put, Get.

Shift

Shift (mat, axis, amount, kind)

Pre: A - the matrix chunk on the master
process
mat - string, the name of the matrix in all
processes
axis - 1 or 2

amount - the number of rows/cols to be shifted
kind - string, 'cshift' circular, 'eoshift' end off
shift

Post: matrix mat is a distributed matrix (using
Distribute) according to the Grid.

This function shifts the distributed matrix the
processes according to the axis, amount, and the

259

kind of the shift.

Returns the upper left corner that the master
matrix is supposed to have. Therefore, for a
distributed matrix
A, the call should be something like: A =
Shift(A, 'A\ 1, 2)

Note that omitting the last parameter defaults to
a circular shift.

Start

Start(n)

Start(rhosts)

It is not possible to add new processes after
MultiMATLAB is already running. Instead one
must Quit and then Start again.

Begin a MultiMATLAB session.

Start(n) initiates n remote MultiMATLAB
processes, bringing the total to n+1 including
the master process. The host names are taken
from the file $MM_HOME/etc/hostfile.

Start(['hostnamer;...;lhostnameN']) opens
remote MultiMATLAB processes for the
hostnames indicated. Hostnames must be the
same length in this hostname matrix in
order for it to be a valid matrix. Therefore,

names should be padded with spaces at the end
manually or by using the MATLAB
command str2mat, e.g.,
Start(str2mat(,parus','purple,,'emma')).\

Sum

res=Sum(val)

Sum can be run only on the master process.

Sum('x') is the elementwise sum of x over all
processes. The variable x must exist and have
the same dimensions on all processes.

See also Max, Min, Prod.

Window

Window(m,n)

Set up the position for figure windows to align
plots by different processes.

Window(M,N) sets up a M by N grid of figures.

See also ResetWindow.

260

References

[1.] V. Menon and A. E. Trefethen
MultiMATLAB: Integrating MATLAB with High-Performance Parallel Computing.
Cornell Theory Center
http://simon.cs.cornell.edu/Info/People/vsm/papers/sc97/

[2.] A. E. Trefethen, V. S. Menon, C. C. Chang, G. J. Czajkowski, C. Myers and L. N. Trefethen
MultiMATLAB: MATLAB on Multiple Processors.
Technical Report pp 96-239, Cornell Theory Center, 1996.
http://www. cs. Cornell. edu/Info/People/lnt/multimatlab. html

[3.] MPICH-A Portable Implementation of MPI
http://www. mcs. anl. gov/mpi/mpich/

[4.] C. C. Chang, G. J. Czajkowski, X. Liu, V. S. Menon, C. Myers A. E. Trefethen, and L. N.
Trefethen

The Cornell MultiMATLAB Project. Cornell Theory Center
http://www.tc.cornell.edu/Sqftware/MultiMATLAB/

[5.] The MathWorks Technical Papers.
http://www.mathworks.com/support/tech-notes/v5/1600/1615.shtml

[6.] The Math Works Inc.
MATLAB User's Guide: Reference Guide. The Math Works Inc. 1992.

261

16. Distributed Algorithm Stream (DAS)

Mike Koligman
Par Government Systems

4 February, 1999

To Support Contract Statement of Work Subtask 4.1.2.3, Establish and Implement
the Airborne Infrared Measurement System (AIRMS) Database.

262

Distributed Algorithm Stream (DAS)

Maui High Performance Computer Center (MHPCC)

RUNNING DAS

Execution of the DAS follows the procedures outlined in the DAS 1.3 User's and
installation manual which can be accessed over the network. This manual (file: install pdf)
is m PDF format and requires a PDF capability such as 'acroread' at the user site. In order
to make expeditious use of the DAS, the user must have an understanding of the theory and
operation of the various modules.

To execute DAS, the user must:

1. Log onto the SP2 (telnet tsunami.spw.mhpcc.edu) using telnet
(users must be registered with MHPCC and have an existing account)
reference http://www.mhpcc.edu.com for account access information.

2. Source the $BASCOM/das. csh setup file after login.

3. Verify that the link to the $PVM_ROOT directory in the user's home directory:
(e.g. cd; In -s $PVM_ROOT)

4. The .rhosts file in the users home directory must contain the list of nodes as well. A
sample file is located in $BASETC/rs6000/rhosts which can be copied to -/.rhosts.
The permission on this copied file must be set via 'chmod 600 -/.rhosts')

5. Be in possession of the necessary namelists and data.

The various modules can be run serially by executing the modules individually (e.g. typing
sa_pn at the command prompt executes the pattern noise module). This is the simplest
mode of operation but also the slowest as only one processor is used.

The DAS can also be run across several nodes on the SP2 as a parallel processing
environment. This is done using the 'das' executable which can be ran in two modes. In
the first, the DAS job is executed interactively using the 18 interactive nodes on the SP2.
Operation in this manner requires that the user first start the pvm deamons on the various
nodes. This is accomplished by supplying a list of nodes to the pvm console:

pvm < $BASETC/rs6000/addhosts

The file $BASETC/rs6000/addmhosts is a sample list of nodes. The DAS can then be
executed interactively as a pvm job. (The user is referred to the documentation
accompanying pvm for further information regarding pvm.)

DAS jobs can also be submitted to the MHPCC load-leveler queue using a script similar to
the following:

#!/bin/csh

Load leveler parameters

#@job_name =das6
#@ output B $Qob_name) .$(cluster) .$(process) .out
#@ error = $(job_name) ,$(cluster) .$(process) .err

263

#@ notification = always
#@ notify_user = YOUR_E-MAEL_ADDRESS
#@ checkpoint = no
#@ job_type = pvm3
#@ parallel_path = /u/joea/pvm3/bin/RS6K
#@ requirements = (Adapter =="hps_ip")
#@ min_processors = 6
#@ max_processors = 6
#@ walI_clock_limit = 5:0:0
#@ environment =MP_INFOLEVEL=5
#@ queue

Run das

echo RUNNING das.cmd
cd $BASSRC/tst
das
echo Execution Complete

When using this script, you need to specify the correct number of nodes (6 above) and
your e-mail address.

IMPORTANT: THIS SCRIPT IS *NOT* RUN INTERACTIVELY BUT IS
SUBMITTED TO THE LOAD-LEVELER QUEUE USING:

llsubmit das.cmd

Man pages for the load-leveler are available at the MHPCC.

INSTALLING DAS

The MHPCC version of DAS is based on DAS V.1.3 which was the final version released
under the AIRMS program. DAS 1.3 was primarily written Fortran 77 and runs on a
variety of platforms.

The SP2 environment at the MHPCC supports Fortran 90. Though the two languages are
similar, there are enough differences between them that numberous code modification were
required for porting DAS. These generally relate to syntax differences between modules
which do not affect the operation of the algorithms.

The bulk of the code translations are made automatically by a preprocessor program
developed under this effort. This program, preproc, takes in the original F77 code,
recognizes the various syntactical differences, and generates a F90 source file that can be
compiled by the IBM compiler. In a few instances, certain F77 codes had to be changed
manually to accommodate both F77 and F90 with the same source file.

To preserve compatibility with the prior machines and the SP2, conditional compilation
(i.e. IF DEFS) constructs were inserted into the code.

The entire DAS package represents approximately 500k lines of code. Only a subset of the
DAS algorithms were ported to the SP2. This set of modules includes the "baseline"
stream that was used under the AIRMS program. Hence, the SP2 user has access to a very
rich, powerful, and well-tested 3-D signal processing stream.

The modules that were ported include:

AP_CAL -Calibration
S A_SB - Sticky-bit removal

264

AP_TI - Additive target injector
AP_TO - Occulting target injector
S A_PN - Pattern noise mitigation
RS_RS - Registration
RS_SG - Scene segmentor
FLJR - Covariance-based 3-D filter
FL_AM - 2-D anti-median filter
RS_RS_ST - Reverse registration
FL_SP_VD - Velocity stacker
DT_BN - CFAR detection & grouping
UT_2TJFD - Frame difference
AP_DR - Data rework
DAS - Parallel executable of the entire algorithm stream

In addition, the following utilities have also been ported:

ARGTOOL - Command line argument pre-processor
AP_GET_CAL_COEFFS - Retrieves cal coefficients from raw data
PREPROC - F77 to F90 converter
UT_CJPEG - Creates jpeg-like images from a B AS file
UT_COMBINE_JPEG - Combines DAS jpeg files
UT_DJPEG - Decodes a DAS jpeg file

NOTE: The file format used in the DAS jpeg imagery is NOT compatible with the industry
standard format. (The above tools can, however, be used to manipulate these files.)

Descriptions and operations of the various modules can be found in the on-line
documentation.

INSTALLATION PROCEDURE.

The DAS installation at the MHPCC follows the general procedure outlined in the DAS
User's and Installation manual which is on-line (file: install.pdf) and can be accessed over
the network. This manual is in PDF format and requires a PDF capability such as
'acroread' at the user site.

The installation procedure assumes that the DAS directory structure is loaded into a
directory $B ASROOT and that the user's default shell is CSH or TCSH:

1. Edit the file $BASROOT/com/unix/das.csh and change the line

setenv BASROOTA

to point to the current B ASROOT directory.

2. Source this file to set up the DAS environment.

3. cd$BASSRC

4. bld_rs6000

Compilation errors that are reported can generally be ignored since they refer to portions of
the code that were not part of the baseline SP2 port. Of course, the user must have the
necessary permission to rebuild the package.

SAMPLE DATA

265

A sample run was created in $B ASTST/rs6000 which can be used for familiarization and
verification purposes. The DAS installation can be checked using this data:

1.
2.
3.
4.
5.
6.

cd $BASTST/rs6000
md test
cd test
cp ../[A-Z]* ../parent.nml ../test.irst
das
Use optimage on one of the suns at MHPCC to view the
results and compare to those in $BASTST/rs6000

REQUIRED NAMELIST PROCESSING PARAMETERS

1. (AP_CAL_PARAM) - Specify Calibration Coefficients from the following list:

CALJDFFSET - Offset
CAL.SLOPE -Gair L

Flight Number Filter Number Gain Offset
13 4 3.4716167e-04 -6.23364
14 4 3.5e-04 -6.5
15 4 2.54e-04 -1.1 (old)
15 4 3.18e-04 -5.91
16 1 2.587e-03 -79.29
16 3 bad data bad data
16 4 3.546e-04 -7.004
16 6 1.596e-02 -514.79
19 4 3.556813e-04 -5.60775
20 4 3.306e-4 -6.285
22 4 3.29e-04 -4.6
23 4 3.41e-04 -5.08
26 4 (TDI ON) 3.31286e-4 -4.681
26 4 (TDI OFF) 1.358e-3 -37.935
28 4 3.09516e-4 -2.661
29 4 (TDI OFF) 1.331e-3 -37.0858
29 4 (TDI ON) 3.09516e-4 -2.661279
31 4 3.3567e-4 -4.27129
32 4 (TDI ON) 3.35826e-4 -4.215411
33 4 (TDI ON) none available

used coefficients from flieht 29's
33 4 (TDI OFF) 1.3455e-3 -37.8335
34 4 3.3642424e-4 -4.820657
35 1 1.2789777e-3 -35.51252

2 5.1267230e-4 -9.811104
4 3.3298979e-4 -4.174171

39 4 3.3998e-4 -4.4687
40 4 3.50363e-4 -6.44521
41 4 2.77728e-4 -3.84992
42 4 2.2491126e-4 -1.989383
45 4 3.43381e-4 -4.85285
46 4 3.7540126e-4 -6.759626
47 1 1.28845e-3 -34.4770

266

17. MHPCC Web-Based IR
Data Library Simulation

Mike Koligman
Joe Attili

Par Government Systems

David Quinn-Jacobs
ReQuest Technologies

November, 1998

To Support Contract Statement of Work Subtask 4.1.2.3, Establish and Implement
the Airborne Infrared Measurement System (AIRMS) Database.

267

MHPCC Web-based IR Data Library and Simulation

Michael Koligman1, David Quinn-Jacobs2, and Joseph B. Attili3

PAR Government Systems Corporation
San Diego Technology Center
1010 Prospect Street, Suite 200

La Jolla, CA 92037

ABSTRACT

The Maui High Performance Computing Center (MHPCC)4 has recently established a remote IR Data Library and Web-based
Simulation environment. This environment enables a large number of researchers to access, review, and process IR data sets
via the internet. The IR data was collected with the ARPA-sponsored Airborne IR Measurement System (AIRMS) sensor
under the completed AIRMS program1.

This paper describes a cost-effective approach for providing internet access to the AIRMS data library and pre-processing
algorithms. The purpose of the effort was to make the data collected with AIRMS and related data documentation easily,
accessible via the Internet by researchers from a wide community of qualified organizations including government
laboratories, universities, contractors, and other interested parties. In addition, users will have the ability to view and process
selected data segments stored at MHPCC. After pre-processing, users can transfer both raw and processed data segments to
their local facilities. The pre-processing algorithms, which were designed and implemented under the AIRMS program
consist of data cleanup, data rework and other signal pre-processing functions. This capability also provided a test bed for
future signal processing algorithm implementations.

Keywords: IR Data, AIRMS, IRST Simulation, IR Processing, IR Signal Processing

1. INTRODUCTION

The infrared (IR) data collected by ARPA's AIRMS sensor contains a wide range of backgrounds and targets which can be
used by researchers for many different applications. The goal of the MHPCC Web-based effort was to provide AIRMS data
to the research and development community in a user-friendly environment which was easily accessible over the internet. The
data library and associated software resides at the Maui High Performance Computing Center.

Various research and government agencies are currently investing in or considering IR sensors as part of a multispectral-
multisensor approach to high probability of detection / low false alarm rate detection, identification, and tracking of targets in
clutter. Applications of interest include:

• Theater surveillance
• Fleet self-defense
• Target search and track
• Aircraft missile threat warning
• Ship missile threat warning / targeting
• Missile seekers
• Theater ballistic missile defense

Research is ongoing into both the signal/track processing algorithms and the associated IR phenomenology. IR data which
can support this research is not readily available from traditional sources and collection programs. The AIRMS program has
amassed a large body of high quality, high resolution IR imagery which currently resides at both the Naval Air Warfare

1 M.K.: Email: Mike_Kougman@PARtech.com Telephone: (619) 551-9880; Fax: (619) 551-0257
2 DQJ.: Email: dqj@RequestTech.com Telephone: (607) 275-3000
3 J.A.: Email: Joea@PARtech.com Telephone: (619)551-9880
4 The work described in this paper was performed by MHPCC, PAR Government Systems Corp., and Request Technologies

268

Center-Weapons Division (NAWC-WPNS, China Lake, CA) and the MHPCC. This data can be very useful to system
designers, algorithm developers, and physicists for addressing a wide range of research problems and issues.
The AIRMS signal processing stream was originally developed and implemented on an 80 node Intel Paragon parallel
processor which was also used to perform the data processing5. The algorithms and data have since been ported to an IBM
SP2 parallel processor located at the MHPCC. The algorithm stream, Distributed Algorithm Stream (DAS), is representative
of current state-of-the-art processing techniques, and as such, can serve as a performance baseline for algorithm research.

Figure 1 shows the AIRMS aircraft and associated MW/LWTR sensor which was used to collect the data. The aircraft was
flown on over 50 missions with a total of over I Terabyte of data collected. Many different types of sky and terrain
backgrounds were collected including clouds, desert, mountains, farmland and ocean. In addition, a variety of targets were
collected including various aircraft, cruise missiles, submarines and ground targets.

Figure 1. AIRMS 720B Aircraft with 24" Aperture MW/LWIR Sensor

The ability to access AIRMS data, pre-processing tools, and documentation over the Internet represents a new paradigm for
disseminating data. It exploits investments in the Internet and the MHPCC to provide much broader access to the data than is
possible with the traditional US mail-based distribution of overview documents, sample imagery, and data tapes that have
been employed by other IR data collection efforts, such as the IRAMMP and IRMS programs.

1.1 Web-based Data Library Benefits

The Web-based data library offers many benefits to the IR research and development community. Never before has data of
such high quality been available as there is now with the AIRMS data. Nor has there been data collected from a single sensor
over such a wide range of backgrounds, targets, atmospheric conditions, and wavebands. The AIRMS data is unique because
of the extreme high resolution of the sensor. Several key sensor attributes are:

a very high spatial (8 urad pixel pitch) and temporal (8.7 Hz frame rate) resolution;
covers a very broad spectral range from 3 to 16 urn by virtue of its helium cooled, extrinsic silicon
detector array;
very low jitter (on the order of 4 - 6 urad);
high sensitivity with low system and residual pattern noise levels (under 100 mK in the 8.2 to 12.2 urn
band);
internal thermal reference sources for accurate radiometric calibration;
accurate determination of its position and the position of target aircraft it observes through use of GPS
receivers on both the AIRMS platform and the target aircraft.

The AIRMS data and pre-processing algorithm stream will provide benefits for many years to come. The potential uses of the
data are many including developing new algorithm streams, evaluating algorithm streams developed for new sensors, and
mapping AIRMS data to user specified sensor parameters (data rework). Historically, there has been a scarcity of high
quality data available during the algorithm development phase of new IR systems. Prior to the AIRMS program, most data
came from the Navy IRAMMP sensor or the Air Force/Lincoln Laboratory IRMS sensor, both of which have deficiencies
which limit their utility (e.g., aliasing, residual sensor artifacts). The available data often did not include background, target,

269

or engagement geometry's similar to the intended application of the new sensor. Historically, algorithms have been evaluated
on very limited sets of data with questionable results. Running algorithm sets on a standard AIRMS data test set can provide
very useful metrics on the overall performance of proposed algorithms. In fact, much of the AIRMS data was processed and
analyzed for target detection performance in the presence of clutter. Processed results can be referenced in the available on-
line documentation. The AIRMS data can truly be used in levying testing requirements on the developers of new algorithms
and provide increased understanding of and confidence in the interpretation of the results.

2. REMOTE ACCESS IMPLEMENTATION

The basic implementation for the AIRMS Remote Data Library and Processing Environment is to have researchers working at
their own facilities on their own workstations, but actually using resources located at the MHPCC. Figure 2 illustrates the
technical concept. The user has simultaneous access to all the assets of his or her local environment (e.g., custom algorithm
software, MATLAB, etc.), the AIRMS Data and Data Librarian, the AIRMS pre-processing algorithms and general purpose
image display functions.

AIRMS Remote Access

User Site Maui HPCC

client/server

MHPCC network
workstation

X Server

X Server

Web Browser
-, <- INTERNET

Remote
Shell

AIRMS
Image
Server

shell commands
(text)

£

I
AIRMS Algorithms 1

I parallel computer
I system with distributed
I algorithm processing

y~- 7
iü^i $
-S i

P. :p;-:. '

/

AIRMS
Data

?
image server and

data base for seamless
access

Figure 2. AIRMS Data Library and Processing Environment

To make the data collected with AIRMS easily accessible, a simple data librarian is available to perform search and retrieval
functions over the internet. The pre-processing algorithms, which can be run on the IBM SP2 parallel computer located at the
MHPCC, are also easily accessed. These pre-processing algorithms allow users to tailor AIRMS raw data to a particular
application. The data search capability requires little or no prior knowledge of AIRMS. Most users will be able to perform
simple searches immediately upon entering the web site. An on-line data storage capability is also available as this is where
the actual AIRMS data is stored. By making the MHPCC parallel computing system available to researchers, processing time
can be significantly reduced and research productivity similarly enhanced.

Figure 3 shows the IBM SP2 parallel computer located at the MHPCC. The SP2 is responsible for executing all of the
AIRMS pre-processing algorithms and associated signal processing tools. The SP2 contains over 500 processing nodes with

270

166 GFLOPS of processing power and 82 GB of memory. The MHPCC also has a 25 TB tape server storage capacity which
is used to store the on-line AIRMS data. A Sun SparcStation, also located at MHPCC, is used as the server and contains all
web interface software. In addition, MPEG imagery and a vast amount of AIRMS documentation is stored on the
workstation. Documentation consists of software reference manuals, bulk data processing reports, and other useful reference
materials.

Figure 3. IBM SP-2 - RS-6000 Unix Processors. Peak throughput = 166 GFLOPS

2.1 Web-based Implementation

The AIRMS Data Library and Processing Environment is comprised of the data librarian, on-line AIRMS data base,
processing tools, general purpose display and analysis tools.

An architecture was needed in which these elements could be integrated to form a cohesive, easy-to-use system. Figure 2
showed the AIRMS Data Library and Processing Environment software architecture. Software components are located either
at the user's site (the left hand side of the figure) or at the MHPCC (the right hand side of the figure). Communication
between the two sites is performed over the Internet, but transparent to the user. (Either a WWW or an X client-server can be
used; the user merely sees multiple windows on the workstation screen).

The AIRMS Data Librarian is resident at and runs on a Sun SparcStation. The AIRMS Data Librarian can be used either
through a WWW browser or directly by logging in to the MHPCC. The AIRMS data files and the data catalog are also
resident at the MHPCC. AIRMS data can be downloaded to the user's site or a reference to the data can be saved for later use
by an AIRMS process. During the execution of the process, the reference is resolved and the actual data is retrieved.

The AIRMS pre-processing software is also resident at the MHPCC and, at the user's discretion, also at the user's site
(approved user's can download the software using a standard FTP service). This software provides the capability of
processing data with the AIRMS algorithm stream distributed among designated SP2 nodes. Runs can be prepared without
logging in to the MHPCC (all set-up information for using the pre-processing algorithms is input using standard FORTRAN
NAMELIST files). When the user is ready to initiate processing, he or she will log in to the MHPCC and initiate the
processing using the NAMELIST files previously created.

The Data Librarian provides an interactive data query and retrieval utility. This utility searches the data files based on user
defined selection criteria. The actual IR data is comprised of hundreds of files, therefore file descriptors (e.g., test ID, date,
time, location, etc.) are extracted from each data file and stored in a data catalog file. It is this catalog file which is actually
searched. The user's interface to the librarian is through a WWW browser and associated query form. (The librarian is

271

actually an extension to the MHPCC WWW server implemented using the Common Gateway Interface, the standard method
of extending WWW servers.)

The query form provides the means to specify a data base query statement without knowledge of a query language such as
SQL. Queries are combinations of the various descriptors with logical operators (e.g., all flights after April 1995 over urban
areas at night containing an F-4 target). After submitting a query, the query results (i.e., a list of all data files which satisfied
the query criteria) are displayed. The complete set of descriptors associated with a file can be displayed by selecting the file
name in the list.

To support processing at a user site, the librarian provides a means to download the selected data. Users must be registered at
the MHPCC before downloading data or accessing controlled database parameters. (When a download is requested, the user
must provide a password to enable the transfer to proceed; only authorized users are permitted access to AIRMS data). If
processing at the MHPCC is desired, the data selections are stored in a text file which is later accessed by the pre-processing
software, (the Data Librarian provides a direct interface with the user in a client-server-server architecture). AIRMS data can
then be displayed and visually evaluated when desired.

3. ACCESSING AND PROCESSING AIRMS DATA

The ability to access AIRMS data and pre-processing algorithms is performed via the internet through a web browser such as
Netscape or the Microsoft Internet Explorer. The AIRMS site will be available for access in the spring of 1998. Interested
users can contact the MHPCC or search the internet on any of the keywords provided in the abstract portion of this paper to
determine the site address. Upon entering the AIRMS site, a list of flight data (left panel on browser window) is presented
including the options to select a simple or advanced queries. The simple query window allows searching basic parameter
choices from the AIRMS database. The advanced query allows specifying additional parameter keywords in addition to the
basic ones contained in the simple query. The advanced query requires some familiarity with the AIRMS database while the
simple query does not.

Figure 4 shows an simple query screen as viewed over the internet. Any number of search parameters can be selected (all
possible choices are presented when appropriate) in addition to specifying logic for the search (i.e. equals, not equals, greater
than, ect.). After making the search selections, users will submit the search by clicking on the submit button. Any matching
AIRMS flight data will then be presented in the left panel. The database contents will then be displayed for the matching
data. An MPEG image of the data will also be presented for previewing selected data.

272

Figure 4. Simple Query Window
Many of the search parameters include a list of choices which can be selected. Two of the most useful search choices are
Background Type and Target Type. Figure 5 shows the possible search choices for each of these two categories. The user
can simply select a background and/or target type for the search. All matching AIRMS data flights containing the selected
choices will then be presented in the left panel of the browser window. The search engine allows searching on all of the
available parameters or selectively specify as many as required to narrow a search. For example, a user may wish to find all
cloud data with a G-II target in the background collected only in December. For this example, the user would select Clouds
using the background type option button and select G-II from target type list Finally, the user would specify contains and
December using the Date option. All matching flight data would then be returned in the left panel. From here, detailed flight
information can be displayed for any or all of the returned matching flights. A separate help facility describing search options
is available by clicking the help button located at the lower right screen of the browser.

273

BACKGROUNDS

None
Blue Sky
Clouds
Desert
Desert Mountains
Farmland
Mountain
Mountains/Forest
Rolling Hills
Scattered Clouds
Urban
Ocean
Airfield
IRStar
Moon
Nuclear Power

Figure 5. Background and Target Search Parameters

TARGETS
None
G-n
T-39
F-4
G-n/T-39
F-15/F-16
Cruise Missile
Ground Targets
Lance
Submarine
HERA
Storm
ARIES
Other
Unknown

One or more flights can be selected to examine detailed database information. Figure 6 shows a sample detailed output for
Flight 12. A sample MPEG image is also display for the first frame of data. If desired, all available imagery frames can be
displayed in a movie type fashion. Available documentation can be viewed for selected flights by clicking either the Flight
Report, Final Tech Report or documentation buttons. Several fields from the data base can accessed only by registered users.
The secure data allows users to supply the MHPCC server with a password at which time restricted data can be viewed.

274

133KnS3nTC333«3!5&5S33än£^C2Sn>*R&S«SS&3t7T?^^

Figure 6. Detailed Database Output for Flight 12 including sample imagery

In addition to viewing detailed database outputs, a summary of key database parameters can be displayed for many flights on
a single screen. This ability allows quick view a variety of flights and collection parameters and then select ones for
downloading or processing. The quick summary can also be used as an archive list to which data was processed. One key
parameter output from the Quick Summary is the Tape number which is important when requesting data from the MHPCC.
Figure 7 shows an example of a quick summary output. The summary was generated by selecting 8 flight runs from the left
browser panel and clicking on the summary table button under viewers.

275

«*«j«»; >':

' .?:£: !i_^_J. _^f„,-':', i ■,, ,-, ,-,{:—-„-,:- [„■.,;■■• -,'.- ,P„ - ■*.-...

}12~-fjmx08 19SMftp<9OTjo" jcioudCoüegionICIttudt JN^JT' "^00 ""

^prTpu^oe, 1994"jl9-S6 57 |H jCUniiCoU'^aniijClonJj jNoht, . J200

-

**g

E
iiifl

i-JH*ta_~

Figure 7. Quick Summary Database Output

3.1 Pre-Processing AIRMS Data

A state of the art end-to-end 3-D space-time processing stream was developed under the AIRMS program1,2. Portions of this
distributed algorithm stream (DAS) have been ported to the MHPCC SP2 to provide a ready source of calibrated, "clean" and
if desired, reworked data. After determining which AIRMS data to process, the user will be required to log into the MHPCC
computer. Following the set up of Namelist files, the user can then submit the job. The user will be notified after the job
completes, and can then download raw data and results. The AIRMS pre-processing algorithms include Data Quality
Assessment, Calibration, Target Injection, Pattern Noise Mitigation, and Data Rework;

• Data Quality Assessment includes a number of checks to determine the quality of the data collected during a
flight. These checks measure sensor noise, calibration, pointing accuracy, stabilization, and focusing.

• Calibration is an adjunct function to the two-point linear non-uniformity correction (NUC) performed within the
sensor hardware. Experience has shown the two-point NUC to be adequate for most applications; however, for
special applications, post-flight linear or quadratic recalibration has proven effective in reducing sensor artifacts,
such as pattern noise, even further. The recalibration process can convert the AIRMS data from sensor AID
counts to radiometric values (radiances).

• Target Injection allows inserting additive point source (i.e., fractional pixel) targets. Grids of targets with
random velocities are typically inserted.

• Pattern Noise Mitigation attenuates row-to-row biases, as well as underlying 5-row and 25-row pattern noise
(due to FPA readout hardware characteristics) present in the data after Calibration and/or NUC. Pattern noise is
further reduced through application of an FIR spatial filter to the imagery

1) MUX-to-MUX offset removal; implements level matching at the MUX boundaries;
2) Row-to-row bias removal; implements bias removal linear filter; and
3) Five-line noise removal; implements five-line noise removal linear filter.

• Data Rework provides the capability to transform AIRMS imagery so that it closely matches imagery that would
be collected by a different sensor. The resolution, pattern noise, and NER of the ATRMS imagery put it at the
forefront of today's IR sensors. Imagery from smaller aperture sensors can be simulated by reworking the
AIRMS data. Reworking includes modifying the MTF, resampling, adding system and pattern noise, and adding
intra- and inter-frame jitter.

276

Figures 8 and 9 illustrate the result of pre-processing raw AIRMS data through Data Quality Assessment, Calibration, Target
Injection and Pattern Noise Mitigation algorithms. Figure 8 shows raw Flight 12 AIRMS data which contains pattern noise
artifacts. Figure 9 shows the same data after pre-processing. Following pattern noise mitigation, it is clearly seen in Figure 9
that the row-to-row bias and MUX-to-MUX offsets have been removed from the raw image.

Figure 8. Raw Flight 12 Data
with Pattern Noise

3.1.1 Download Data from the MHPCC for Local Processing

Figure 9. Processed Flight 12 Data
Pattern Noise Removed

An example illustrating downloading data from the MHPCC to a user site shown below.

• The user links to the AIRMS Library World Wide Web (WWW) home page using Netscape or a
similar WWW browser. This page, located on the MHPCC server, contains links to ATRMS
background and reference material, an overview of the data library, an overview of the AIRMS
algorithm stream, as well as a link to the library query page.

• The user peruses the data interactively using the query form provided. Searches of the data base can be
requested by combining the various fields (e.g., flight number, type of background, type of target,
waveband, etc.) with logical operators (e.g., and, or, =, >, <, etc.). The user also has the option to view
MPEG images from the data files. In this way the user selects and identifies data sets relevant to his or
her specific research.

• The user is given the option to download from the MHPCC all or any portion of the data selected. If
the data is not currently on-line, the user will receive an immediate message. Once the data is placed
on-line at the MHPCC, the user will be notified via e-mail. When the download function is initiated,
the user will be asked to input a password. Password protection is the way used to ensure that only
approved users can download full resolution image data.

The user then initiates any processing desired on his or her own workstation. Local processing software might include the
serial version of the DAS, off-the-shelf packages such as Khoros, MATLAB, PV Wave; or custom software developed by the
user.

3.1.2 Remotely Process Data at the MHPCC

An example illustrating the user interaction for remote data processing at the MHPCC is shown below.

• The user logs into the MHPCC through the Internet (i.e., does a remote login from an open window on
his or her workstation). Password protection is used to ensure that the user is approved to use the
MHPCC.

277 '

• The user selects data using either the WWW query capability (identically to the previous example) or
the more sophisticated AIRMS Librarian (a direct X window client-server application). A data
selection previously saved by the user could also be recalled.

• The user interactively sets up algorithm and/or analysis runs, and identifies the AIRMS data to be
processed. Packages are available to users include: the AIRMS pre-processing software and a general
purpose image processing package. AIRMS uses text files to specify the parameters and processing
options. These text files can be created on either the MHPCC or the user's local workstation.

• The user submits one or more processing runs. The actual processing of AIRMS data is then
performed at the MHPCC and the user notified of completion by email.

• The user logs in again and either inspects the results at the MHPCC in a client server relationship with
the user's workstation, or the user can download the results and inspect on his or her workstation
directly with any analysis packages available locally.

4. SUMMARY

This paper has presented a top level description of the AIRMS Web-based IR Data library and pre-processing capabilities.
The frame-based WWW interface provides users with a simple and efficient means of accessing, pre-processing and
downloading AIRMS data. Users can query the AIRMS database using a multitude of search parameters including
background, target type, number of frames, ect. Users can also preview sample AIRMS imagery data stored in MPEG format.
A quick summary database output is available to allow users to quickly display summary information for many flights
together in a single window. Expanded database detail information and a vast amount of documentation consisting of reports
and manuals is also available on-line.

The intent of this paper is to generate high visibility and maximum utility for AIRMS data by providing access to the data and
processing algorithms via the internet. This transfer of technology to the community takes advantage of existing government
and contractor expertise, software, and facilities and provides the highest quality IR data in existence to the research
community. In addition, access to a high performance computing facility (MHPCC IBM SP2) for data processing provides
system/algorithm developers, physicists, etc., the ability to address a wide range of problems using the internet as well as
traditional methods to acquire and process IR data.

ACKNOWLEDGMENTS

The authors greatly acknowledge the many contributors to the developers of the MHPCC program including Peter Wiley of
the Naval Air Weapons Center, China Lake, and DJ. Fabozzi of the MHPCC.

REFERENCES

1. K. Ralston, J. Attili, et al., "The Airborne Infrared Measurement System Final Technical Report", PAR Government
Systems Corporation, La Jolla, 1996.

2. Joseph B. Attili, Robert W. Fries, et. al., "False Track Discrimination in a 3-D Signal/Track Processor", SPIE
Proceedings (Signal and Data Processing of Small Targets Conference), 1996.

278

Bibliography/References

1. Tanenbaum, A.S,"Computer Networks", Prentice Hall, Englewood Cliffs, New Jersey, p429.

2. Postel, J. and Reynolds, J., "File Transfer Protocol (FTP), RFC 959", USC ISI, October 1988.

3. Krol, E. "The Whole Internet", O'Reilly & Associates, Inc, Sebastopol, CA.

4. Iannucci, D.J., Lekashman, J., "MFTP: Virtual TCP windo scaling using multiple connections".

5. "FTP manual pages", SunOS Release 4.1, January 1988.

6. The Math Works Inc, MATLAB Compiler User's Guide, ** »Publisher*** 1995.

7. V. Menon, A. Trefethen, "MultiMATLAB: Integrating MATLAB with High-Performance Parallel
Computing", SuperComputing '97 Technical Paper.

8. Real Time Express, http://www.rtexpress.com/.

9. Luiz De Rose and David Padua, A MATLAB to Fortran 90 Translator and its Effectiveness, 10th ACM
International Conference on Supercomputing, May 1996.

10. The RTExpress distribution example codes.

11. The Ground Processing Space Time Adaptive Processing (STAP) Suite courtesy of Massachusettes
Institute of Technology/Loncoln Laboratory.

12. P.L. Springer, Matpar: Parallel Extensions for MATLAB,
http://www.hpc.ipl.nasa.gov/PS/MATPAR/index.html.

13. Joel Hollingsworth, Kun Liu, and Paul Pauca, Parallel Toolbox for MATLAB, Wake Forest
University, http://www.mthcfc.wfu.edu/pt/pt.html.

14. H. Anton, Elementary Linear Algebra, 1984 John Wiley and Sons, p69-86.

15. MATCOM V2, A MATLAB to C++ compiler Users Manual.

16. The Math Works, Inc. MATLAB Compiler, 1995.

17. The Math Works, Inc. MATLAB User's Guide, 1996.

18. The Math Works, Inc. MATLAB Reference Guide, 1996.

19. The Math Works, Inc. MATLAB External Interface Guide, 1996.

20. The Math Works, Inc. Corporate web pages located at http://www.mathworks.com.

21. Luiz De Rose and David Padua. A MATLAB to Fortran 90 Translator and its Effectiveness, March
1996.

22. V. Menon and A.E. Trefethen MultiMATLAB: Integrating MATLAB with High-performance Parallel
Computing. Cornell Theory Center. http://simon.cs.cornell.edu/Info/People/usm/papers/sc97/

23. A.E. Trefethen, V.S. Menon, C.C. Chang, G.J. Czajkowski, C. Myers and L.N. Trefethen
MultiMATLAB: MATLAB on multiple processors. Technical Report pp96-239, Cornell Theory
Center, 1996. http://www.cs.cornell.edu/Info/People/Int/multimatlab.html

279

24. The Math Works Inc., MATLAB User's Guide: reference Guide, Compiler Guide. The Math Works
Inc. 1992.

25. R. Butler and E. Lusk, Monitors, message and clusters: "The P4 Parallel Programming System",
Parallel Computing, April, 1994.

26. MPICH-A Portable Implementation of MPI http://www.mcs.anl.gov/mpi/mpich/

27. C.C. Chang, G.J. Czajkowski, X. Liu, V.X. Menon, C. Myers A.E. Trefethen, and L.N. Trefethen. The
Cornell MultiMATLAB Project. Cornell Theory Center.
http://www.tc.comell.edu/Software/MultiMATLAB/

28. The Math Works Technical Papers, http://www.mathworks.com/support/tech-
notes/v5/l 600/1615.shtml

29. The Math Works Inc. MATLAB User's Guide: Reference Guide. The Math Works Inc. 1992.

30. Integrated Sensors, Inc. RTExpress Real Time User's Guide, July 1998.

31. Integrated Sensors, Inc. Product web pages located at http://www.rtexpress.com.

32. K. Ralston, J. Attili, et. al., "The Airborne Infrared Measurement System Final Technical Report",
PAR Government Systems Corporation, La Jolla, 1996.

33. Joseph B. Attili, Robert W. Fries, et. al., "False Track Discrimination in a 3-D Signal/Track
Processor", SPIE Proceedings (Signal and Data Processing of Small Targets Conference), 1996.

«U.S. GOVERNMENT PRINTING OFFICE: 2001-710-038-10169

280

